$\begin{array}{c} {\rm MATH~210} \\ {\rm RULES~FOR~DIFFERENTIATION,~PART~1} \end{array}$

Atomic Rules

$$\frac{\mathrm{d}}{\mathrm{d}x} x^{\alpha} = \alpha x^{\alpha - 1}$$
$$\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \sin x = \cos x$$
$$\frac{\mathrm{d}}{\mathrm{d}x} \cos x = -\sin x$$

$$\frac{\mathrm{d}}{\mathrm{d}x} c \cdot f(x) = c \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (f(x) + g(x)) = f'(x) + g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (f(x) - g(x)) = f'(x) - g'(x)$$

Differentiate the following functions:

- a(x) = 9001
- $b(x) = x^7 4x^5 + 3x^4 x^2 + 10x 8$
- \bullet $c(x) = e^x x^e$

- $\bullet \ d(x) = c \quad x$ $\bullet \ d(x) = 6\sqrt[3]{x}$ $\bullet \ f(x) = \frac{1}{x} \frac{3}{x^3}$ $\bullet \ g(x) = \frac{2}{\sqrt{x^5}} e^2 \cdot e^x$
- $h(x) = 2 \sin x$ $i(x) = \pi \cos x + \frac{x}{\pi}$

Using your previous work, determine the derivatives at specific inputs:

- b'(1)
- c'(0)
- f'(3)
- $h'(\pi/3)$
- j'(0)
- (1) Use the definition of the derivative to explain why the differentiation rule for multiplication by a constant works.
- (2) Use the definition of the derivative to explain why the differentiation rule for addition works.
- (3) Use the rules for multiplication by a constant and addition to explain why the differentiation rule for subtraction works.