MATH 210 RULES FOR STANDARD PARTS

Properties of \approx

Two numbers a and b are *infinitely close*, $a \approx b$, if their difference a - b is infinitesimal.

(1) Basic properties.

- (a) a is infinitesimal if and only if $a \approx 0$;
- (b) If a and b are real and $a \approx b$ then a = b.
- (2) Equality-like properties.
 - (a) $a \approx a;$
 - (b) If $a \approx b$ then $b \approx a$;
 - (c) If $a \approx b$ and $b \approx c$ then $a \approx c$.
- (3) Size properties. Assume $a \approx b$.
 - (a) If a is infinitesimal then so is b;
 - (b) If a is finite then so is b;
 - (c) If a is infinite then so is b.

STANDARD PARTS

Standard part principle. Every finite hyperreal number a is infinitely close to exactly one real number. We call this number the *standard part* of a, and denote it st(a).

- (1) **Basic properties.** Let a be finite.
 - (a) st(a) is a real number;
 - (b) $a = \operatorname{st}(a) + \varepsilon$ for some infinitesimal ε ;
 - (c) If a is real then a = st(a).
- (2) Arithmetic properties. Let a and b be finite.
 - (a) $\operatorname{st}(-a) = -\operatorname{st}(a);$
 - (b) $\operatorname{st}(a+b) = \operatorname{st}(a) + \operatorname{st}(b);$
 - (c) $\operatorname{st}(a-b) = \operatorname{st}(a) \operatorname{st}(b);$
 - (d) $\operatorname{st}(a \cdot b) = \operatorname{st}(a) \cdot \operatorname{st}(b);$
 - (e) $\operatorname{st}(a/b) = \operatorname{st}(a)/\operatorname{st}(b)$, provided $\operatorname{st}(b) \neq 0$;
 - (f) $\operatorname{st}(a^n) = \operatorname{st}(a)^n$;
 - (g) $\operatorname{st}(\sqrt[n]{a}) = \sqrt[n]{\operatorname{st}(a)}$, provided $a \ge 0$;
 - (h) If $a \leq b$ then $\operatorname{st}(a) \leq \operatorname{st}(b)$.