MATH 217M1: TAKE-HOME FINAL EXAM DUE MONDAY 10/21

High Pass: High quality solutions for at least 6 of the 8 problems. **Pass:** High quality solutions for at least 4 of the 8 problems.

Problem 1. Suppose you divide the plane into regions by drawing (finitely many) straight lines. Prove that you can color the regions with two colors so that adjacent regions don't share a color.

The next two problems are about square-free numbers. Say that a positive integer n is square-free if there are no integers a, b > 1 so that $n = a^2b$.

Problem 2. Suppose n is a positive integer. Prove that n is square-free if and only if every exponent in its prime factorization is 1.

Problem 3. Prove that every positive integer n can be uniquely factored as $n = rs^2$ where r and s are positive integers and r is square-free.

The next two problems are about order isomorphisms. Recall that if (X, \leq_X) and (Y, \leq_Y) are orders then they are *isomorphic* if there is an isomorphism $f : X \cong Y$, where an *isomorphism* is a bijection $f : X \to Y$ with the property that $a \leq_X b$ if and only if $f(a) \leq_Y f(b)$.

Problem 4. Prove that any two closed intervals are isomorphic as orders, where the intervals have the order from the real line. That is, if a < b and c < d are real numbers then the intervals [a, b] and [c, d] are isomorphic as orders.

Problem 5. Prove that the real line \mathbb{R} and any open interval are isomorphic as orders. That is, if a < b then \mathbb{R} and (a, b) are isomorphic as orders.

Problem 6. Suppose m < n are natural numbers. Prove that there is no injection from a set with n elements to a set with m elements.

Problem 7. Suppose n is a natural number and suppose that A is a set with n elements. Prove that any injection $A \rightarrow A$ is a surjection.

Problem 8. Define a relation \sim on sets as $A \sim B$ if there is a bijection $A \rightarrow B$. Prove that \sim is an equivalence relation.