
MATH 217M
A LITTLE LOGIC

The logical structure of a mathematical statement informs both how you might prove it
and how you can use it in proofs. For that reason it is helpful to see a little about logic. By
“mathematical statements” I mean predicates, statements which can be either true or false.

Examples of predicates:
• “There are infinitely many primes.”
• “There exists a real-valued function which is continuous everywhere but differentiable

nowhere.”
• “p is prime.”
• “The limit of f(x) as x approaches a is L.”

Some predicates have parameters, others do not. When we use variables to refer to a
predicate we will write e.g. P (x, y) to denote that the predicate P has parameters x and y.
Whether P (x, y) is true can depend on what you plug in for x and y!

We can analyze predicates as being built up from simpler predicates. The basic logi-
cal notions are divided into connectives, which connect multiple predicates to form a more
complex predicate, and quantifiers, which make an assertion about many different mathe-
matical objects—numbers, functions, etc. The connectives and quantifiers in a mathematical
statement determine how it can be used in proofs.
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Connectives

The basic connectives are conjunction (∧), disjunction (∨), negation (¬), implication (⇒),
and equivalence (⇔).

The meaning of the connectives is given in two ways, by truth tables and by inference
rules. Truth tables tell you about how the truth or falsity of the input predicates determine
the truth or falsity of the compound predicate. While inference rules tell you about how the
connective can be used in proofs.

Conjunction. The connective ∧ corresponds to what is expressed by the English word
“and”. Intuitively, P ∧Q means that both P and Q are true.

You might see P ∧Q expressed in English as “P and Q” or “P , but Q”.

Truth Table

P Q P ∧Q

T T

T F

F T

F F
Observe from the symmetry in this truth table and order doesn’t matter for ∧: P ∧Q and

Q ∧ P are equivalent.

Inference rules

• From P,Q infer P ∧Q.
• From P ∧Q infer P,Q.

The first inference rule tells us to prove a statement of the form P ∧Q we can separately
prove P and Q. The second inference rule tells us that if we know P ∧ Q then we can
conclude both P and Q to use individually in our proof.

Implication. The connective ⇒ corresponds to what is expressed by the English words “if
then”. Intuitively P ⇒ Q means that if P is true then Q is also true.

There are many different ways P ⇒ Q gets expressed in English: “if P then Q”, “Q
whenever P”, “P is sufficient for Q”, “Q is necessary for P”, “Q, if P”, “P implies Q”, “P ,
hence Q”, etc.
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Truth Table

P Q P ⇒ Q

T T

T F

F T

F F
Naturally, order does matter here: P ⇒ Q does not have the same meaning as Q ⇒ P .

If the third row of this truth table seems off, hold onto that thought. We’ll come back to
it when we look at quantifiers. In short, this is the definition that makes things work right
with quantifiers.

Inference rules
• From P , P ⇒ Q infer Q.
• If from P you can infer Q, then you can infer P ⇒ Q.

The first inference rule is known as modus ponens, and is how P ⇒ Q is most often used
in proofs. Namely, if you know both P and P ⇒ Q then you can conclude Q. For example,
you might know both that n2 is even and that if n2 is even then n is even. Modus ponens
says you can conclude n is even.

The second rule tells you how you can prove a statement of the form P ⇒ Q. It says that
if you can prove Q from an assumption of P then this lets you conclude P ⇒ Q.

Equivalence. The connective ⇔ corresponds to what is expressed by the English words “if
and only if”. This phrase is commonly used by mathematicians, so the abbreviation “iff”
gets used. Intuitively, P ⇔ Q means that P and Q are equivalent.

Like implication, there are many different ways P ⇔ Q gets expressed in English: “P if
and only if Q”, “P and Q are equivalent”, and “P is a necessary and sufficient condition for
Q” are just some of them.

Truth Table

P Q P ⇔ Q

T T

T F

F T

F F
Note the symmetry; order doesn’t matter.
Inference rules

• From P ⇔ Q infer P ⇒ Q, Q ⇒ P .
• From P ⇒ Q, Q ⇒ P infer P ⇔ Q.
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These rules express that P ⇔ Q has the same meaning as “P ⇒ Q and Q ⇒ P”. To
prove an equivalence you have two implications to prove. And if you know an equivalence
then you may conclude either of the implications.

Negation. The connective ¬ corresponds to what is expressed by the English word “not”.
Intuitively, ¬P means that P is not true.

English phrases using the word “not” usually correspond to a statement of the form ¬P .
But be aware that the word “not” can appear in many different places in a sentence: “it is
not the case that there is a largest integer”, “n is not prime”, “X is infinite [= not finite]”.

Truth Table

P ¬P

T

F
For the inference rules let’s introduce a new symbol: ⊥ is a special symbol meaning an

impossibility, e.g. something like P ∧ ¬P .

Inference rules

• From P ⇒ ⊥ infer ¬P .
• From ¬¬P infer P .
• From P infer ¬¬P .

The first inference rule expresses proof by contradiction: to prove ¬P you show that
assuming P implies an impossibility.

The second and third inference rules express the principle of double negation, which says
that any predicate is equivalent to its double negation.

We can also now express two new rules about implication.

• From ¬Q, P ⇒ Q infer ¬P .
• If from ¬Q you can infer ¬P , then you can infer P ⇒ Q.

These rules both come from the fact that P ⇒ Q is equivalent to its contrapositive
¬Q ⇒ ¬P . The first rule is called modus tollens and the second expresses what is called
proof by contrapositive.

Disjunction. The connective ∨ corresponds roughly to what is expressed by the English
word “or”. Intuitively, P ∧Q means that at least one of P and Q is true.

Note that this is an ‘inclusive or’, not an ‘exclusive or’, allowing both options at once.
When a waiter tells you the entree comes with soup or with a side salad, then both is not
an acceptable answer. But when a mathematician tells you that a number is either ≥ 0 or
≤ 0, then both is an acceptable answer.

You might see P ∨Q expressed in English as “P or Q”, “at least one of P and Q”, “either
of P or Q”, or so on.
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Truth Table

P Q P ∨Q

T T

T F

F T

F F
Note the symmetry; order doesn’t matter.
Inference rules

• From P infer P ∨Q.
• From P ⇒ R, Q ⇒ R infer (P ∨Q) ⇒ R.
• From ¬P ⇒ Q infer P ∨Q.

The first rule expresses one way to prove a disjunction: you just need to prove one of the
two disjuncts is true.

The second rule expresses proof by cases. It expresses that if you can draw the same
conclusion from either P or Q, then you can conclude that P ∨Q implies that conclusion.

The third rule expresses another way to prove a disjunction. Namely, what do you do if
you can’t settle for sure which of P or Q is true? In this case you want to assume one is
false and prove the other is true.

Other connectives

You might worry that these connectives aren’t expressive enough. What if, for example,
you want to express an exclusive or: either P or Q, but not both. You can see why the
logical formula you get from that English definition gives exclusive or by comparing truth
tables:

P Q P xor Q

T T

T F

F T

F F
In a similar fashion, any possible connective you might want to define can be expressed

in terms of the five basic logical connectives. (Indeed, it turns out you can get away with
fewer.)

Yet more inference rules

You can derive yet more inference rules by looking at truth tables. In particular, two
logical expressions are equivalent if they have the same truth table.
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An important example is given by DeMorgan’s laws:
• ¬(P ∧Q) is equivalent to ¬P ∨ ¬Q;
• ¬(P ∨Q) is equivalent to ¬P ∧ ¬Q;

Fill out the truth tables to confirm equivalence:

P Q ¬(P ∧Q) ¬P ∨ ¬Q

T T

T F

F T

F F

P Q ¬(P ∨Q) ¬P ∧ ¬Q

T T

T F

F T

F F
Here are some more equivalences you can check using truth tables:

• Associativity of ∧: P ∧ (Q ∧R) is equivalent to (P ∧Q) ∧R.
• Associativity of ∨: P ∨ (Q ∨R) is equivalent to (P ∨Q) ∨R.
• Distributivity of ∧ over ∨: P ∧ (Q ∨R) is equivalent to (P ∧Q) ∨ (P ∧R).
• Distributivity of ∨ over ∧: P ∨ (Q ∧R) is equivalent to (P ∨Q) ∧ (P ∨R).

False inference rules

There are some invalid inferences that people sometimes make. Let me highlight a couple
common ones.

• Affirming the consequent: From Q, P ⇒ Q infer P .
• Denying the antecedent: From ¬P , P ⇒ Q infer ¬Q.

The fallacy in each is replacing the implication P ⇒ Q with its converse Q ⇒ P . An
implication is not equivalent to its converse!
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Predicates and sets

There is a close connection between logic and set theory.
• Work over a domain U . For example, if you’re dealing with natural numbers you’d

take U = N.
• If P (x) is a predicate about objects x from U , then the extension of P (x) is the set
P = {x ∈ U : P (x)}. In words, the extension is the set of all x for which P (x) is
true. This notation for defining a set is called set builder notation. It amounts to
giving a predicate which defines the objects in the set.

• The connectives ∧, ∨, and ¬ correspond to set theoretic operations.
– The extension of P (x) ∧Q(x) is the intersection P ∩Q.
– The extension of P (x) ∨Q(x) is the union P ∪Q.
– The extension of ¬P (x) is the complement U \ P .

• The connectives ⇒ and ⇔ correspond to statements about subsets and set equality.
– P (x) ⇒ Q(x) is true for all x ∈ U if and only if P is a subset of Q, written
P ⊆ Q.

– P (x) ⇔ Q(x) is true for all x ∈ U if and only if P = Q.
– Note that P = Q is equivalent to (P ⊆ Q) ∧ (Q ⊆ P ).
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You can graphically express these relationships with Venn diagrams.
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Quantifiers

Mathematics is full of statements like “every non-constant polynomial has a root in the
complex numbers”. That is, we aren’t just interested in a predicate P (f) like “f has a root
in the complex numbers” by itself. We want to know something about the fs’ behavior as a
whole.

You can rewrite this expression to make the quantifiers clear: “for all non-constant poly-
nomials f there is a complex number r so that f(r) = 0”.

• “For all” is the universal quantifier. We write ∀x P (x) for “for all x, P (x)”.
• “There is” is the existential quantifier. We write ∃x P (x) for “there is x so that
P (x)”.

Usually you don’t want to look at all objects in the universe of mathematics. Instead, you
want to only look at certain kinds of objects. For this we use bounded quantifiers, restricting
the objects looked at to a certain set.

Suppose we want to quantify over a smaller domain D.
• ∀x ∈ D P (x) is equivalent to ∀x (x ∈ D ⇒ P (x)).
• ∃x ∈ D P (x) is equivalent to ∃x (x ∈ D ∧ P (x)).

You also sometimes see bounded quantifiers for ways of restricting beyond set membership.
For example,

∀x ≥ 0 ∃y ∈ R x = y2

expresses the fact that ever real ≥ 0 is a perfect square.
You can write down inference rules explaining how quantifiers are used in proofs. I’ll write

these for bounded quantifiers, as those are the most commonly used. Here, x is a variable
for an object in a domain D and t is a term or name for a specific object in D.

• If you can infer P (x) about arbitrary x ∈ D then you can infer ∀x ∈ D P (x).
• If you can infer P (t) then you can infer ∃x ∈ D P (x).

These rules express how to prove statements about quantifiers. To prove a statement
about all x ∈ D, you assume you are looking at some random x ∈ D, where you’re not
allowed to make any further assumptions. And then you want to concluded P (x) for this
arbitrary object. Whereas to prove the existential statement it suffices to look at a specific
example t.

• From ∀x ∈ D P (x) infer P (t).
• From ∃x ∈ D P (x) infer P (x), where x is an unused variable.

These rules express how you can use known statements about quantifiers. If you know
something is true for all x ∈ D, then you can infer its true for any specific t you care about.
Whereas if you only know that it’s true for some x ∈ D, then all you can do is give a name
to the witnessing object.

We also have rules which express how to rewrite statements about quantifiers. The most
important of these are DeMorgan’s laws.

• ¬∀x P (x) is equivalent to ∃x ¬P (x).
• ¬∃x P (x) is equivalent to ∀x ¬P (x).

These are useful for proofs by contradiction. For example, if you want to prove ∀x P (x) note
it’s equivalent to ¬∃x ¬P (x). This is an appropriate form to use proof by contradiction.
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To explain the name: you can think of ∀x P (x) as a big, possibly infinite, conjunction
over all x’s, and ∃x P (x) as a big, possibly infinite, disjunction. Then these equivalences
about quantifiers exactly correspond to the DeMorgan’s laws about connectives.

A note on writing mathematics and logical symbols

The various logical symbols we’ve seen this week are great for studying logic. Much like
it’s nicer to write “2 + 3” than “the sum of 2 and 3”, when proving results about logic
it’s nicer to use symbols. These symbols also are commonly used by mathematicians as
abbreviations, especially when writing on chalkboards.

These symbols are also great to use when breaking down the logical structure of a state-
ment. Whenever you want to prove a statement, if you don’t know how to begin a good first
step on your scratch paper is to write the statement in logical form.

That said, it’s considered bad writing to use these symbols as abbreviations in mathemat-
ical writing. For example, it’s preferred to write “every differentiable function is continuous”
instead of “∀f , f is differentiable ⇒ f is continuous”. An overuse of logical symbols can
make your arguments harder for a reader to follow.

In general, the overuse of symbols can make mathematical writing more opaque. A good
question to ask yourself is, am I using these symbols because the brevity they provide makes
the argument more clear? Or am I just doing it because I don’t want to write out a phrase
in English?
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Exercises

High Pass: All five problems.
Pass: At least two parts of problem 1, at least three of the remaining problems.

(1) Translate the following mathematical statements into logical notation. For the first
two please use the order relation < on N as your basic mathematical concept. For
the last one, use the order relation < on R, the absolute value function |x|, and
the arithmetic operations as your basic mathematical concepts. That is, besides the
logical symbols you should only use the prescribed concepts and set membership ∈.

• The least number principle, i.e. if X ⊆ N has an element then it has a least
element.

• Strong induction, i.e. if X ⊆ N has the property that for any n ∈ N if every
m < n is in X then n ∈ X, then X = N.

• The epsilon-delta definition of continuity at a point a: for any ε > 0 there is
δ > 0 so that if the distance from x to a is less than δ then the distance from
f(x) to f(a) is less than ε.

(2) Check the distributivity laws for ∧ and ∨ using truth tables.
(3) Consider the predicate B(x, y) expressing “x is bigger than y”. Use this predicate to

give examples explaining why the order of quantifiers matters: ∀x ∃y P (x, y) is not
equivalent to ∃y ∀x P (x, y).

(4) Let A be the set of all prime numbers > 2 and let B be the set of odd numbers.
Write definitions of A and B in set builder notation and prove that A ⊆ B. [Hint:
This is asking you to prove an if-then statement.]

(5) Let A be the set of all nonnegative real numbers and let B be the set of all squares
x2 of a real number x. Write definitions of A and B in set builder notation and prove
that A = B. [Hint: this is asking you to prove an if-and-only-if statement.]


