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1. Introduction

Set theory was birthed with a lemma in an 1874 article about transcendental numbers, those
numbers which cannot be obtained from purely algebraic operations.1 Building on his earlier ideas
developed to study trigonometric series, German mathematician Georg Cantor (1845–1918) came
upon a germ of an idea that would eventually grow to revolutionize mathematics. He would spend
the rest of his career elaborating on this idea to found the branch of mathematics known as set
theory. That is the topic of this course.

Set theory is the study of the mathematical concept of set, defined by Cantor as a multiplicity
considered as a unity, with the emphasis on infinite sets. Despite the seeming simplicity of this
concept, it is remarkably general and all of mathematics can be coded in terms of sets. In this class
we will study the core concepts of Cantorian set theory—ordinals and cardinals—as well as some
important concepts that were developed post-Cantor.

The definition in Cantor’s 1874 lemma was that of a countable set, one whose elements can
be listed in an infinite sequence. The lemma was that this definition is not trivial: There are sets
which are not countable.

Lemma (Cantor 1874). The set R of real numbers is not countable.

Proof. Let’s see a proof Cantor came up with in 1891. His original proof is more complicated, and
makes for a good problem set :)

Suppose toward a contradiction that there were an infinite sequence 〈xn : n ∈ N〉 of all real
numbers. Look at the decimal expansions of these numbers.2 We will define a new infinite sequence
of digits 〈dn : n ∈ N〉 which will be the decimal expansion of a number y between 0 and 1. Namely,
set dn = 5 if the n-th digit of xn past the decimal is 7, and set dn = 7 otherwise.

Let’s see that y 6= xn for any n. Suppose otherwise that y = xn. Then, by construction, the
n-th digit of y is 5 if and only if the n-th digit of xn is 7. This is impossible. �

Much work in set theory can be understood as investigating how to generalize facts about count-
able sets to all infinite sets. Accordingly, our first task will be to understand countable sets. Once
we have done that we will be ready to study ordinals and cardinals, two of the main objects of
Cantorian set theory. And then we will move into ideas developed after Cantor.

Date: January 16, 2024.
1More precisely, a number is algebraic if it is a solution to a polynomial equations in rational coefficients and is

transcendental if it is not.
2There is a small complication. Some numbers have two decimal expansions, not one. For example, 1.000 . . . =

0.999 . . .. If a number has two decimal expansions, then let’s only consider the one which ends in repeating 9s.
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Instructions on how to read these lecture notes

Reading mathematics is an active affair. Mathematical writing is dense, and it takes time and
effort to understand it. You should constantly be asking yourself questions like “why is this true?”
or “do I believe this claim the author made?” or “what are the further implications of this idea?”
Have paper with you that you can write on to fill in any gaps in the reasoning, work out an example,
or so on. If you read passively you will find it difficult to internalize the concepts and will have a
harder time with writing your own arguments.

Parts of these lecture notes will be assigned to you to read outside of class, and others we will
go through in class together. Each section will end with a few exercises. These serve two purposes:
to serve as a test of your understanding and to introduce yet more facts you should know. Do
the exercises! All of them! They should be straightforward if you understood the section. If
you are unable to solve an exercise that’s telling you that you need to spend extra time on the
material—reread the notes, talk to me in office hours, talk to classmates, or so on.

Separate from the exercises in different pdfs are problem sets for each chapter. These are more
substantive and are what you will present in problem sessions and turn in as part of your portfolio
for the class.
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2. Sets

To say what a countable set is we first must say what a set is. Here is a proto-definition we will
revisit later.

Proto-Definition 1. A set is a well-defined collection of objects, defined only by what objects are
its elements or, synonymously, members. We write x ∈ A to mean that the object x is an element
of the set A.

The definition permits non-mathematical objects. It is sensible to talk, for example, about the
set of people currently reading this document. Our focus, however, will be on sets of mathematical
objects—numbers, points, etc.

Since sets are defined by their elements, to define a set it suffices to say exactly what its elements
are. We will use curly braces as notation for this purpose. For example, {0, 1, 2, 3} is the set whose
elements are precisely the numbers 0, 1, 2, and 3. Note that sets don’t come with a notion of order,
since the only information is in or out. So {3, 2, 1, 0} would be another way to write that same set.

This way of defining sets is not useful when the set has many elements, especially when it’s
infinite. Instead we will define a set by picking out a property which defines which objects are
elements of the set. Let’s see an example before the general definition.

Suppose we want to define the set of real numbers which are a rational multiple of π. There’s a
few ways one might write this. One would be to go purely symbolic:

{x ∈ R : ∃q ∈ Q x = qπ}.

Or you might mix in natural language:

{x ∈ R : x = qπ for some rational q}.

Either is correct, but it’s considered bad style to be overly symbolic, especially with logical symbols
like ∃.

Definition 2 (Set-builder Notation). Let ϕ be a definite property, so that for an object x either
ϕ(x) holds or else ϕ(x) doesn’t. Then {x : ϕ(x)} denotes the set of exactly all objects x for which
ϕ(x) holds. Often we’re only interested in objects x from an extant set A and write {x ∈ A : ϕ(x)}.
Another common variation is when we aren’t interested in x itself but rather some other object
f(x) defined using x. For this case we write {f(x) : ϕ(x)}.

Here’s an example of that last case. Suppose you want to define the set of integers which are
odd perfect squares. One way to do this would be to write

{n ∈ N : n = k2 for some odd k ∈ N}.

But it’s clearer to instead write

{k2 : k ∈ N is odd}.
There will always be multiple ways to define a set. No matter how you define a set, however,

what matters is what objects are elements of that set. For example, these two sets are the same:
{n+ n : n ∈ N} and {2n : n ∈ N} (why?).

In general, X = Y is defined to mean that every element of X is an element of Y and every
element of Y is an element of X. In other words, the two sets are subsets of each other: X ⊆ Y and
Y ⊆ X. Philosophers use the word extensional to refer to objects that have this property of being
defined in terms of their elements. Other extensional objects in mathematics include functions—
two functions are the same just in case the same inputs have the same outputs. You can have
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two properties which are different intensionally (they have different meanings) but they have the
same extension (they designate exactly the same object or objects). The classic example used is
the morning star Phosphorus versus the evening star Hesperus. They have different intensions but
the same extension—namely, the planet Venus.

By extensionality there is a unique set with no elements. We call it the empty set, written ∅. It’s
defined by the property that x 6∈ ∅ no matter what x is.

Once you have multiple sets you can combine them. These basic set theoretic operations corre-
spond to logical operations.

Definition 3. Let A and B be sets.

• The union of A and B is A ∪B = {x : x ∈ A or x ∈ B}.
• The intersection of A and B is A ∩B = {x : x ∈ A and x ∈ B}.
• The difference of A in B is B \A = {x ∈ B : x 6∈ A}.3

There are also notions of union and intersection for more than two sets. Let X be a set of sets.
(That’s allowed!) Then: ⋂

A∈X
A = {x : x ∈ A for all A ∈ X}⋃

A∈X
A = {x : x ∈ A for some A ∈ X}.

We will refer to these as infinitary intersection and union, as they are most interesting to us when
X is infinite. Sometimes it’s convenient to use the shorter ∩X or ∪X to refer to, respectively, the
intersection of or union of all the sets in X . A benefit of the more verbose notation is that it admits
variations. Here’s an example:

Proposition (Infinitary De Morgan’s Laws). Let X be a set of sets and let C be a set. Then,

C \
⋃

A∈X
A =

⋂
A∈X

C \A

C \
⋂

A∈X
A =

⋃
A∈X

C \A

Proof. Part of the problem set for this chapter :) �

If having sets whose elements are themselves sets seems odd, you will have ample time to get
used to that in this class. We will study a lot of sets like this. One particularly important example
of a set of sets is the powerset.

Definition 4. Let X be a set. The powerset of X is P(X) = {Y : Y ⊆ X} is the set of all subsets
of X.

Here’s a quick fact about powersets to get a feel for working with them.

Proposition 5. Suppose X = {x0, x1, . . . , xn−1} is a finite set with n elements. Then P(X) has
2n elements.

3Some authors write B −A. Ick.
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Proof. Two subsets of X are the same if and only if they have the same elements, so we need to
see how many ways there are to pick elements from X. We have n many choices to make—include
xn or not?—and each choice has two possible options. So in all there are 2× 2× · · · 2 = 2n many
choices for how to get a subset of X. �

Exercises.

(1) You step outside of mathematics and define a set {x : x is a tall person}. Is this a well-
defined collection? Why or why not?

(2) Give two different definitions in set-builder notation for the set of integers which are mul-
tiples of 3.

(3) Check that ∪ and ∩ are associative and commutative:

(A ∩B) ∩ C = A ∩ (B ∩ C)

(A ∪B) ∪ C = A ∪ (B ∪ C)

A ∩B = B ∩A
A ∪B = B ∪A

(4) Why is there not an analogous thing to check for the infinitary versions of union and
intersection?

(5) Check the distributivity laws for union and intersection:

A ∩ (B ∪ C) = (A ∪ C) ∩ (B ∪ C)

A ∪ (B ∩ C) = (A ∩ C) ∪ (B ∩ C)

(6) Check the De Morgan laws for sets:

C \ (A ∪B) = (C \A) ∩ (C \B)

C \ (A ∩B) = (C \A) ∪ (C \B)

(7) What is ∪P(X)? What is ∩P(X)?
(8) Explicitly write out all elements of P(∅) and P(P(∅)). What about P(P(P(∅)))?
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3. Countable sets

Before we can clear up what it means for a set to be countable, let’s lay down some definitions
about functions.

Recall that a function f from a set A to a set B is formalized to be a set of pairs (a, f(a)) with
a in A and f(a) ∈ B, where each a ∈ A appears in exactly one such pair. We will write this briefly
as f : A→ B. Under this formalization, functions are by definition total : the domain of f , namely
the set of inputs, is all of A. We reserve the term partial function for those whose domain is merely
some of A. The range or image of f is the set {f(a) : a ∈ A}. Write dom f for the domain of a
(possibly partial) function and ran f for the range.

Example 6. There is a unique function whose domain is the empty set. Under our formalization,
this function is an empty set of ordered pairs. We call it the empty function and write ∅ to denote
it.

A function f : A→ B is onto B if ran f = B. We also call these surjections, and say e.g. that f
surjects A onto B. A function f is one-to-one if different inputs go to different outputs. In symbols:
a0 6= a1 implies f(a0) 6= f(a1), where a0, a1 ∈ dom f . We also call these injections. A function
f : A→ B is a bijection onto B if it is both one-to-one and onto B.

An important fact about injections is that they admit inverses: f−1 : ran f → A is the function
defined as f−1(b) is the unique a so that f(a) = b. In particular, if f : A → B is a bijection then
f−1 : B → A is also a bijection. (Check this!)

A quirk of this formalization of function is that B isn’t really part of what makes up a function.
For example, the sine function can be thought of as a function R→ R or R→ [−1, 1]. Either way,
it’s the same function: the same inputs go to exactly the same outputs. In some contexts this is
inconvenient and you want the codomain B to be part of the definition. (Under that definition
sin : R → R and sin : R → [−1, 1] would be different functions.) It’s straightforward to translate
from one formalization to the other, so ultimately it matters little which you choose. For the
purposes of this class this is the more convenient formalization.

Here’s a real-world example of a bijection that works for most people. Hold up your left hand,
then your right hand. Touch each finger on the left hand to the corresponding finger on the right—
thumb to thumb, index to index, etc. This gives a bijection from your left-hand fingers to your
right-hand fingers.

Definition 7. A set X is countable if there is a bijection from X to a subset of N.

For example, ∅ and N are countable. More generally, any subset of N is countable. Before we
see less trivial examples, let’s see some equivalent ways to formulate this property.

Lemma 8. The following are equivalent for a set X.

(1) X is countable;
(2) There is an injection f : X → N;
(3) (If X is nonempty.) There is a surjection f : N→ X; and
(4) (If X is nonempty.) There is a sequence 〈xn : n ∈ N〉 of all elements of X.

Proof. (1⇒ 2) A bijection f : X → A ⊆ N is an injection f : X → N.
(2 ⇒ 3) Suppose you have an injection f : X → N. Fix x ∈ X. Define g : N → X as

g(n) = f−1(n) if n ∈ ran f and otherwise g(n) = x.
(3⇒ 4) Given a surjection f : N→ X define a sequence 〈xn : n ∈ N〉 as xn = f(n). Done.
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(4 ⇒ 1) Given a sequence 〈xn : n ∈ N〉 of all elements of X define an injection f : X → N as
f(x) is the least n so that x = xn. �

Now let’s look at some more interesting examples of countable sets.

Proposition 9. Z is countable.

Proof. The idea to enumerate Z in a sequence is to alternate between the positive and negative
integers. Namely, set x2n = n and x2n+1 = −n for n ∈ N. Then 〈xn : n ∈ N〉 enumerates Z. �

We can push this idea further.

Proposition 10. Suppose A and B are countable. Then A ∪B is also countable.

Proof. Let 〈an : n ∈ N〉 enumerate A and 〈bn : n ∈ N〉 enumerate B. Define a new enumeration
〈xn : n ∈ N〉 of A ∪B as x2n = an and x2n+1 = bn. �

You could prove this proposition using the injection characterization of being countable. But
this adds a small complication if A∩B is nonempty—do you use the injection for A or the injection
for B to decide where to send x ∈ A ∩ B? The enumeration characterization lets us avoid this
obstacle. Other times a different characterization of being countable is easier to check. It’s nice to
have options.

Definition 11. Let A and B be sets. Their cartesian product is

A×B = {(a, b) : a ∈ A and b ∈ B}.
If n is a positive natural number let

An = {(a0, a1, . . . , an−1) : ai ∈ A for each i < n}.
And let A0 = {∅}.

That last part maybe looks a little strange, so let’s understand it better. One way to think about
An is to think of A as an alphabet, and then An is the set of length n words. How many words are
there of length 0? Just one, the empty word. If this isn’t convincing, when we look at cardinals
later we will give a more general definition of exponentiation of sets and connect it to arithmetic
operations. Then A0 having 1 element corresponds to x0 being 1 for any number x.

Proposition 12. N2 is countable.

Proof. Think of N2 as a two-dimensional grid of points. We enumerate the grid diagonally.

N

N

The violet lines give the enumeration, starting at (0, 0) and moving to the northeast. �
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Proposition 13. Q is countable.

Proof. It’s enough to prove that the set Q+ of non-negative rationals is countable, by our earlier
proposition that the union of two countable sets is countable.

Using the previous proposition we have an enumeration (n0, d0), (n1, d1), . . . of all the pairs of
natural numbers. Create an enumeration of Q+ by setting qk = nk/dk, or qk = 0 if dk = 0.
Since every non-negative rational can be written as a ratio of two natural numbers, this gives an
enumeration of all of Q+. �

We can generalize this.

Proposition 14. Let A and B be countable sets. Then A×B is countable.

Proof. Let f : A → N and g : B → N be injections. Then h : A × B → N × N defined as
h(a, b) = (f(a), g(b)) is an injection. (Why?) Composing this injection with the bijection N×N→ N
given by the previous proposition gives an injection A×B → N. �

Corollary 15. Let A be a countable set. Then An is countable for any n ∈ N.

Proof. By induction on n. The key point is that An+1 is in bijective correspondence with An ×A.
(Why?) �

If A is a set of symbols, you can think of An as all length n words formed from the symbols in
A. Can we push this even further to show there are only countably many words of any length?

Yes we can. Let’s first do it for finite A. As a warm-up we need to see how big An is.

Lemma 16. Suppose A = {a0, . . . , ak−1} is a finite set with k elements. Then An has kn many
elements.

Proof. This is similar to the argument that the powerset of a k element set is 2k. Namely, consider
what an element of An looks like. It’s an n-tuple of elements from a. To build such an n tuple we
make n many independent choices, each with k options. So in all there are k × k × · · · × k = kn

many ways to build up an element of An. �

For a set A, let

A<ω =
⋃
n∈N

An

be the set of finite words with symbols from A.4 For example, {0, 1}<ω is the set of all finite binary
strings.

Proposition 17. Let A be a finite set. Then A<ω is countable.

Before we prove this observe that A<ω will never be finite provided A 6= ∅, because it contains
words of any finite length and there’s infinitely many lengths.

Proof. Let’s define a bijection N → A<ω by first saying what gets mapped to the 0 length words,
then the 1 length words, and so on. For this purpose fix a bijection f : {0, . . . , k − 1} → A where
k ∈ N is the size of A. For A0 there’s only one word: send 0 to the empty word, and we’ve used
up 1 element of our domain. For A1 there’s k many words. For each i < k send 1 + i to (f(i)).
Now we’ve used up 1 + k elements of our domain. To cover the k2 elements of A2, for i, j < k send
1 + k + (k ∗ i+ j) to the word (f(i), f(j)).

4An alternate notation one sees for this, especially in computer science, is the Kleene star A∗. I use the A<ω

notation because we will generalize it later after we’ve looked at ordinals.
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At this point it’s starting to be tedious to do exact counts, so let’s abstract a bit. We’re proceeding
by induction on n to say where to map natural numbers to get An in the range. Assume we’ve
done this below n, using up only a finite initial segment of N, call it all the numbers < N . We need
to continue by saying how to cover An. The set An has size kn, which means there’s a bijection
g : {0, 1, . . . , kn − 1} → An. We’ll use the the first kn many unused numbers in the domain to
handle these. Namely, for i < kn send N + i to g(i). Then we’ve used up all the numbers < N +kn,
so we still have space to continue.

It remains to confirm that the function we built up this way really is a bijection. It’s one-to-one
because we never sent a natural number to a word we’d already covered. And it’s onto because by
construction we cover every length n word for every n. So we’re indeed done. �

You could work out an ad hoc argument to extend this to countable and infinite A, but let’s be
lazy and derive it from a powerful and important fact. And then I’ll leave proving that fact as a
problem for you to do.

Theorem 18. A countable union of countable sets is countable. That is, if A0, A1, . . . , An, . . . are
all countable sets, then so is ⋃

n∈N
An.

Proof. Do this as part of the problem set for this chapter :) �

Corollary 19. Let A be any countable set, possible infinite. Then A<ω is countable.

Proof. From an earlier proposition we know that each An is countable. So A<ω is a countable union
of countable sets, whence it is countable. �

Exercises. The composition of two functions is obtained by doing them in succession. More
precisely, if f : A→ B and g : B → C then g ◦ f : A→ C is defined as (g ◦ f)(a) = g(f(a)).

(1) Check that if f : A → B and g : B → C are injections then their composition g ◦ f is an
injection.

(2) Check the analogous fact for surjections. Why does this imply the analogous fact for
bijections?

(3) Check that if f : A→ B is a bijection then f−1 : B → A is a bijection.
(4) Explain why there are only countably many books in the English language.
(5) Explain why there are only countably many computer programs.
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4. Induction and the well-order property

We’ve used induction a few times and it’s an important feature about the natural numbers. Let’s
look at it more closely. We’ll later generalize these ideas to a broader class of structures.

Fact 20 (Induction property of N). Suppose that X ⊆ N is a set with the property that, for any
n ∈ N if every k < n is an element of X then n ∈ X. Then, X = N.

Some textbooks call this formulation of induction “strong induction”. I’m just calling it induction
because it’s the formulation that’s appropriate for generalization. More often used is this version.

Fact 21 (+1 induction property of N). Suppose X ⊆ N is a set with the property that 0 ∈ X and,
for any n ∈ N, if n ∈ X then n+ 1 ∈ X. Then, X = N.

Proof from the induction property of N. Fix X ⊆ N with the property that 0 ∈ X and if n ∈ X
then n + 1 ∈ X. I claim that if n ∈ N and every k < n is in X then n ∈ X. To see this, consider
such an n. If n = 0 then we already know n ∈ X. If n > 0, then by assumption n − 1 ∈ X. But
then (n− 1) + 1 = n ∈ X, as desired. So by the induction property we get X = N. �

This fact gives the proof technique known as proof by induction. To prove that something is true
for all n ∈ N, you prove it for 0 and you prove that if it’s true at a number then it’s true at the
next number. This implies it’s true for all natural numbers because if X is the set of n for which
the property is true, then X satisfies the induction property and so X must be all of N.

Sometimes induction is taken as a basic property. For example, the Dedekind–Peano axioms
for natural number arithmetic take induction as one of the axioms. But you can see induction as
coming from a more basic structural fact about the order on N. First let’s abstract a property of
the order of N, Z, and other familiar structures.

Definition 22. A linear order5 (X,≤) is a set X equipped with a binary relation ≤ on X satisfying:

(1) ≤ is reflexive: x ≤ x for all x;
(2) ≤ is transitive: x ≤ y ≤ z implies x ≤ z;
(3) ≤ is antisymmetric if x ≤ y and y ≤ x then x = y; and
(4) ≤ has trichotomy: for all x, y ∈ X either x ≤ y or y ≤ x.

If only the first three properties are satisfied then (X,≤) is called a partial order.

All of the familiar ordered number systems are linear orders: N, Z, Q, and R.

Following common practice in mathematics, we will often just write X to refer to the linear
order, not explicitly including the order ≤. It shouldn’t be confusing to use the same symbol ≤ for
different orders, but when it would improve clarity I’ll write e.g. ≤X .

On the topic of notation, it’s convenient to introduce symbols ≥, <, and > defined from ≤. This
is just like how it works with number systems, but let me be explicit.

• x ≥ y means y ≤ x;
• x < y means x ≤ y but x 6= y; and
• x > y means y < x.

All of these are inter-definable, so if you have one you can get the other three. As such, it doesn’t
matter which you use for the official definition of a linear order. You just have to make some small

5Also called a total order. Some authors also use phrases like “linear ordering” to have a very slightly different

meaning—e.g. (X,≤) is a linear order but ≤ is a linear ordering of X. But I think that’s confusing so I won’t do it.
Similar comments apply for other kinds of orders.
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changes in how you phrase the axioms. For example, the tri in trichotomy makes the most sense if
you formulate it in terms of < and >.

Proposition 23. Let (X,≤) be a partial order. Then ≤ has trichotomy if and only if for all
x, y ∈ X exactly one of the three possibilities x < y, x = y, or x > y is true.

Proof. (⇒) Fix x and y. We know that either x ≤ y or x ≥ y. If both are true, then x = y. If
x 6= y, then only one of the two can be true, by antisymmetry. So the two remaining options are
x < y or x > y, depending on which of the two cases we are in.

(⇐) Fix x and y. If x < y then x ≤ y, and similarly if x > y then x ≥ y. And if x = y then in
particular x ≤ y. So we have seen at least one of x ≤ y or x ≥ y is true. �

The order on N is special. It’s not just a linear order, it’s also a well-order.

Definition 24. A linear order (X,≤) is a well-order if every nonempty subset of X has a least
element. That is, if Y ⊆ X is not empty then there is m ∈ Y so that m ≤ y for all y ∈ Y . When
we want to refer to it by itself, we call this extra property well-foundedness.

Here’s a few examples of well-orders.

(1) The linear order 2 consisting of two elements.
(2) The linear order 1 consisting of a single element.
(3) The linear order 0 consisting of zero elements.
(4) The order ω+ω consisting of two copies of N, with the elements of the second copy coming

after all of the elements of the first copy.

This one is less obvious, so let’s check it. I leave checking that ω + ω is a linear order to you as
an exercise, and only check the well-order property. Suppose X ⊆ ω+ω is nonempty. If X contains
an element from the first copy of N, then it has a least element from that copy, by the fact that N
is a well-order. This must be the least element of X. If X doesn’t contain any elements from the
first copy of N, then it must contain elements from the second copy. It must have a least element
from that copy, which must be the least element of X.

This idea can be generalized. If (X,≤) and (Y,≤) are linear orders then you can define a new
linear order X + Y as: the domain of X + Y is

{(0, x) : x ∈ X} ∪ {(1, y) : y ∈ Y }
with the order ≤X+Y defined as (i, a) ≤X+Y (j, b) if and only if i < j or i = j and a ≤ b. (Here ≤
is whichever of ≤X or ≤Y makes sense.)

Proposition 25. Suppose X and Y are linear orders. Then X + Y is also a linear order. If X
and Y are well-orders then so is X + Y .

Proof. Do what we did with ω + ω. Fill in the details as an exercise. �

And here’s some examples of linear orders which are not well-orders.

• Z, because there’s no smallest negative number.
• Q, because there’s there no smallest negative number.
• The set of reals ≥ 0, because there’s no smallest positive real.

One reason why well-orders are an important concept in set theory is that they yield that
induction is possible.

Theorem 26. Suppose X is a well-order. Then X has the induction property: Suppose Y ⊆ X
has the property that for any x ∈ X if every y < x is an element of Y then x ∈ Y . Then, Y = X.
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Proof. Fix Y ⊆ X so that for any x ∈ X if every y < x is in Y then so is x. Assume toward a
contradiction that Y 6= X. Then, X\Y is nonempty. By well-foundedness, X\Y has a least element
m. Note now that every y < m is in Y , by leastness of m. But then m ∈ Y , a contradiction. �

Because N is a well-order, we get that induction works for the natural numbers. This theorem
tells us that induction works for much more than just N, but we will leave investigating so-called
transfinite induction until we’ve looked at ordinals.

Exercises.

(1) Use induction to prove that, for any n ∈ N,
n∑

i=0

i =
n(n+ 1)

2
.

(2) Formulate a definition of linear order in terms of the strict order < instead of ≤. Check
that it’s equivalent to the definition in terms of ≤.

(3) Check that ω + ω is a linear order.
(4) Check that if X and Y are linear orders then so is X + Y .
(5) Check that if X and Y are well-orders then so is X + Y .
(6) Show that from the +1 version of induction on N you can prove that N has the induction

property. (I.e. what some sources call strong induction.)
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5. Recursive constructions

Closely related to the idea of induction is the idea of constructing objects by recursion. If you
have some experience with programming, you should be familiar with using recursion to define
functions. We also do this in mathematics.

Everyone’s favorite first example of definitions by recursion is the factorial function, and it’s
mine too.

Example 27. Define a function ! : N→ N as: 0! = 1 and (n+ 1)! = (n+ 1) · n!.

You can check for yourself that, for example, 5! = 5 · 4 · 3 · 2 · 1 = 120.
Why is this a valid definition of a function? We can see why using induction. Let X be the set

of n ∈ N for which n! makes sense. The base case definition 0! = 1 tells us 0 ∈ X and the successor
case for (n+ 1)! tells us that if n ∈ X then so is n+ 1. By induction, we get that X is all of N.

Let’s see another example of this.

Example 28. Define a function · : N2 → N by recursion on the second coordinate.

• a · 0 = 0 for any a ∈ N;
• a · (b+ 1) = (a · b) + a.

To verify this is a valid definition you do much the same as we did with the factorial.
When doing definitions by recursion, sometimes you want to have access to more than just one

previous case. This is how, for example, the famous Fibonacci sequence is defined.

Example 29. The Fibonacci sequence is the sequence 〈Fn : n ∈ N〉 of natural numbers defined re-
cursively as:

• F0 = 0 and F1 = 1;
• Fn+2 = Fn + Fn+1.

The first few numbers in this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Because we need the two previous cases to define Fn+2, we need two base cases to get us started.
And maybe it seems weird that we used recursion to define a sequence instead of a function. But
a sequence is just a function whose domain is N: you can think of 〈xn〉 as a function x so that
x(n) = xn.

When you have an object defined by recursion, it naturally lends itself to proofs by induction.
Let’s see an example.

Proposition 30. For any n we have
n∑

i=0

F 2
i = Fn · Fn+1.

Proof. The base case n = 0 is just the equality 02 = 0 · 1. For the successor case, assume
n∑

i=0

F 2
i = Fn · Fn+1.

Then
n+1∑
i=0

F 2
i =

n∑
i=0

F 2
i + F 2

n+1 = Fn · Fn+1 + F 2
n+1 = Fn+1 · (Fn + Fn+1) = Fn+1 · Fn+2. �
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We can unify all of these recursive definitions, and any other you might do, into a single definition.
What is the general pattern? When defining what to do at stage n in the recursion, we want to
know what happened at previous stages. Our examples only used one or two previous stages, but
for full generality we want to allow the use of any previous stage. Of course, we can’t use what
happens at stage n or beyond, as that would make us fall prey to diagonalization.6 We might also
want to use the stage n itself in the recursion, as we did with the factorial. So at stage n we need
to have both n and the partial function defined below n.

Let’s get some notation before we state the theorem.

Definition 31. Let f : X → A be a function and suppose Y ⊆ X. The restriction of f to Y ,
written f � Y , is the function whose domain is Y and agrees with f on that domain. That is,
(f � Y )(x) = f(x) whenever x ∈ Y and is undefined otherwise.

Definition 32. For any n ∈ N, Write n to refer to the set {0, . . . , n− 1} of natural numbers < n.
In particular, 0 = ∅.7

Theorem 33 (Definitions by recursion). Let G(n, f) be a function whose inputs are a natural
number n and a function f whose domain is the set of natural numbers < n. Then there is a
function F with domain N so that for all n ∈ N we have F (n) = G(n, F � n).

Before we see the proof, let’s break this down into plain language. First, note that 0 = ∅ and
so F � 0 is always the empty function ∅—the unique function whose domain is the empty set. So
G(0, ∅) is saying what the base case is. Overall, what this function G is doing is unifying the base
case(s) and the successor cases of the recursive definition into a single object. The theorem then
says that making a recursive definition generates a genuine function F . So this is just a mathy way
to say that definition by recursion is valid.

And now let’s see how our previous examples fit into this framework.

Example 34. Let G(n, f) be the function defined as G(0, ∅) = 1 and otherwise G(n + 1, f) =
(n+ 1) · f(n). Then the F (n) produced by the theorem is the factorial function n!.

The multiplication example is a bit awkward, since we want a function with domain N2. But it
also fits into this general pattern.

Example 35. Fix a ∈ N. Let Ga(n, f) be the function defined as G(0, ∅) = 0 and G(n + 1, f) =
f(a) + a. The theorem gives a function Fa(n) = a · n. So we could define a · n as Fa(n).

In effect, what we did here was do infinitely many recursive definitions simultaneously and then
glued them together into a single function.

Example 36. Let G(n, f) be the function defined as G(0, ∅) = 0, G(1, f) = 1, and G(n + 2, f) =
f(n) + f(n+ 1). Then the theorem gives a function F (n) which gives the n-th Fibonacci number.

Proof of theorem. The idea is this: To define F (n) for any fixed n we only need to carry out the
recursive construction a finite number of steps. So we will define F (n) by saying there’s a finite list
of the steps done to compute it, and then argue that there cannot be a stage n for which this fails.

Here it is in more detail: Define F (n) = y just in case there is a function f with domain n + 1
so that f(0) = G(0, ∅) and for all k < n we have f(k + 1) = G(k + 1, f � (k + 1)). To see that

6Consider the “definition” of a sequence 〈xn : n ∈ N〉 as xn = 0 if and only if xn = 1. Clearly this is not a valid
definition.

7We’ll come back to this funky overloading of the symbol n when we look at ordinals. For now, you can think of
it as giving a convenient name for the set of stages below n.
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domF = N first note that 0 ∈ domF because F (0) = G(0, ∅). Now suppose that n ∈ domF , as
witnessed by the function f with domain n + 1. Letting y = G(n + 1, f) define a new function f ′

as f ∪ {(n + 1, y)}.8 Then f ′ witnesses that F (n + 1) is defined. So domF must be all of N by
induction.

Finally, there’s a small detail to check, namely that this definition gives a function. That is, we
need to know that F (n) is uniquely defined. This follows once we know that the f witnessing that
F (n) is defined. Again prove this by induction on n. There’s a unique witness F (0) is defined—the
empty function—and to go from n to n+ 1 there’s only one option for how to extend. �

Why did we go through so much effort in the proof to talk about these finite functions f rather
than just going straight to F like we did with the examples? The point of the theorem is that
definitions by recursion are valid, and it’d be circular to presume that F is well-defined. The
seeming detour with the f ’s is what we need to do to confirm F really does exist.

To close out the section, let’s see a fancier example of a definition by recursion.

Definition 37. Let (X,≤) and (Y,≤) be linear orders. An embedding of X into Y is a function
e : X → Y so that x0 ≤X x1 if and only if f(x0) ≤Y f(x1). If ran f = Y then we call f an
isomorphism between X and Y . If there is an isomorphism between X and Y we say X and Y are
isomorphic and write X ∼= Y .

If we want to be extra clear that we are talking about orders, we talk about order embeddings,
order isomorphisms, and so on.

Theorem 38 (Cantor). Any countable linear order embeds into Q.

Proof. Let X be a countable linear order. If X is finite this is easy: just send the least element to
0, the next to 1, and so on. So assume X is infinite. Fix an enumeration x0, x1, . . . of the elements
of X, where each element appears exactly once in the enumeration. We will define an embedding
f : X → Q using recursion along this enumeration.

To start, set f(x0) = 17/3. (If your favorite rational number isn’t 17/3 you can use it instead.)
To proceed, assume we have already defined f(x0), f(x1), . . . f(xn) and we arranged it so that
this partially constructed f embeds {x0, x1, . . . xn} into Q. We need to define f(xn+1) so that we
preserve the order relations. Note that the rational numbers f(x0), f(x1), . . . f(xn) divide Q into
n+ 3 many regions: the rationals below all of them, the rationals between the smallest and second
smallest, etc., up to the rationals above all of them. Similarly, x0, x1, . . . xn divide X into up to
n + 3 many regions. (I say “up to”, because e.g. x7 might be the smallest element of X and so
there’s no region of elements below it. Or maybe there’s no elements between x1 and x7.) The next
element xn+1 must be in one of those ≤n+ 3 regions, say between xi and xj . Then set f(xn+1) to
be any rational number between f(xi) and f(xj).

After we’ve gotten through the entire enumeration we’ve defined a function f : X → Q. To see
this function is an embedding, consider xi and xj . Without loss of generality, let j > i. Then at
stage j in the construction we defined f(xj) so that xi ≤ xj if and only if f(xi) ≤ f(xj). �

Let’s clear up a possible confusion about this argument. Unless X is just N itself, then you can’t
have that the order ≤X matches up with with the enumeration. That is, you shouldn’t expect that
m < n implies that xm <X xn. One way to think about this is, imagine if X is Q. Then there’s
no smallest element of X, so x0 cannot be the smallest element. So you’ll get lots and lots of xn’s

8If this looks a bit weird: recall that functions are formalized as sets of ordered pairs. So we’re extending f to
have n + 1 in its domain. This sort of notation is convenient when building up functions by hand.
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which are smaller than x0, even though they come later in the enumeration. More generally, there’s
always infinitely many rationals between rationals a < b, and so you’ll have xn’s for arbitrarily
large n which are between a and b. Any enumeration of Q has to dance around a lot.

Exercises.

(1) Give a recursive definition of exponentiation nm on the natural numbers.
(2) Prove that the n-th Fibonacci number Fn is always less than 2n.
(3) Give a recursive definition of iterated exponentiation (sometimes called tetration). Write

this as n ↑ m to mean n iteratively exponentiated m many times.9 What is the correct base
case for this definition?

(4) For a natural number n and a set X, inductively define Pn(X):
• P0(X) = X;
• Pn+1(X) = P(Pn(X)).

Prove that Pn(∅) has 2 ↑ n elements.
(5) For a set X let Pω(X) =

⋃
n∈N Pn(X). Explain why Pω(X) exists.

(Kameryn J. Williams) Bard College at Simon’s Rock, 84 Alford Rd, Great Barrington, MA 01230

E-mail address: kwilliams@simons-rock.edu

URL: http://kamerynjw.net

9That is, n ↑ m = nn
. .

.
nn

︸ ︷︷ ︸
m many

.
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