
MATH 355 LECTURE NOTES

CHAPTER 1: ORDINALS

KAMERYN J. WILLIAMS

1. Isomorphism types

Last chapter we saw an important definition. I repeat it here.

Definition 1. A linear order (X,≤) is a well-order if it satisfies the well-foundedness property: if
Y ⊆ X is nonempty then Y has a least element.

In mathematics when studying an object of XYZ type what matters is its XYZ structure. The
notion of an isomorphism captures this idea, saying when two XYZs have the same XYZ structure.
Different kinds of structures have corresponding notions of isomorphism. For orders, this was the
definition.

Definition 2. Two linear orders (X,≤) and (Y,≤) are (order) isomorphic if there an (order)
isomorphism between them: a bijection f : X → Y so that x0 ≤X x1 if and only if f(x0) ≤Y f(x1).
We write X ∼= Y to mean X and Y are isomorphic.

It’s an exercise to check that ∼= is an equivalence relation.
Caution! Two objects might be isomorphic as XYZes but not as ABCs. For example, one of the

problems in the Chapter 0 problem set was for you to show that any two countable dense linear
orders without endpoints are isomorphic. For example, the rationals Q and the dyadic rationals
Q2—those rationals which can be written with a denominator that is a power of 2—are order
isomorphic. But they are not isomorphic as arithmetic structures. This can be seen by noticing
that Q is closed under division (except by 0) whereas Q2 is not closed under division by 3.1

Accordingly, when talking about XYZs we really want to talk about equivalence classes under
isomorphism.

Proto-Definition 3. Consider a type of mathematical structures, such as linear orders. An iso-
morphism type is an equivalence class of these structures under isomorphism. For orders, we call
these order types. For example, for linear orders an order type is a collection

[X] = {Y : Y is a linear order which is isomorphic toX}.

(This is a protodefinition because we will see in Chapter 3 that it has a technical issue to resolve.
But morally this what you should be thinking about.)

With that out of the way I can introduce one of the core concepts in set theory: the ordinal.

Definition 4 (Cantor, first definition of ordinal). An ordinal, also called an ordinal number, is an
order type of well-orders.

Date: February 22, 2024.
1If you’ve taken modern algebra: these are not isomorphic as rings.
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Exercises.

(1) Show that isomorphism of linear orders is an equivalence relation.
(2) Show that the only order type of linear orders which contains finitely many orders is the

order type of the empty order (i.e. the unique linear order on the empty set). Any other
order type must contain infinitely many isomorphic orders.
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2. Ordinals, a first look

It’s convenient to have more than one way to think about ordinals, so let’s begin this chapter by
seeing an equivalent way to formulate well-foundedness.

Lemma 5. Let (X,≤) be a linear order. Then the following are equivalent.

(1) X is well-founded.
(2) There are no infinite descending sequences in X. That is, there are no sequences 〈xn : n ∈ N〉

from X so that xn > xn+1 for all n.

Proof. (1 ⇒ 2) By contrapositive. Suppose 〈xn : n ∈ N〉 is an infinite descending sequence in X.
Then the nonempty set {xn : n ∈ N} doesn’t have a least element, so X is not well-founded.

(2 ⇒ 1) Also by contrapositive. Suppose X is ill-founded, so there is nonempty Y ⊆ X with
no least element. In particular, X itself must be nonempty. We will build an infinite descending
sequence by recursion. To start, fix nonempty Y0 ⊆ X so that Y0 has no least element. Let x0 be
an element of Y0. Note that Y1 = {y ∈ Y0 : y < x0} must also have no least element; if it did, such
would also be the least element of Y0.

Inductively, we have constructed x0, . . . , xn with xn ∈ Yn so that Yn has no least element. We
continue on the same: set Yn+1 = {y ∈ Yn : y < xn} and then let xn+1 be any element of Yn+1. The
recursion theorem tells us this recursive construction produces a sequence, which by construction
is an infinite descending sequence in X. �

Now let’s talk ordinals. In general, we’ll use Greek letters at the beginning of the alphabet—
α, β, γ, . . .—to refer to an arbitrary ordinal. When talking about ordinals, we will do a common
notational abuse and e.g. use α to refer to both the ordinal (i.e. equivalence class under isomor-
phism) and an order of that ordertype. This is to avoid awkward locutions like “let A be an order
of order type α”. And later we will see that there is a canonical choice for an order isomorphic to
α.

We also have special names for certain ordinals.

Example 6. (N,≤) is a well-order. We denote the ordinal of its order type as ω.

Example 7. Let n ∈ N. Any linear order with n elements is a well-order. We denote the ordinal of
its order type as n.

Draw out these ordinals, say as a progression of points:

0 =

1 = ©
2 = © ©
3 = © © ©
...

ω = © © © © © © © © © · · ·
These pictures should suggest that there’s some sort of order on ordinals, where we can compare
shorter versus longer ordinals. Indeed we can. But first let’s talk a bit about ordinal arithmetic.

Example 8. Take ω, and place another copy of ω to the right. This is a new ordinal:

ω + ω = © © © © © · · · © © © © © · · ·
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This idea works more generally.

Definition 9. Let α and β be ordinals. Then α + β is the linear order consisting of a copy of α
followed by a copy of β. More precisely, you can define α+ β as the ordertype of {0}×α∪ {1}× β
ordered by (i, x) ≤ (j, y) if i < j or i = j and x ≤ y.

Proposition 10. α+ β is an ordinal when α and β are ordinals.

Proof. Suppose X ⊆ α+ β is nonempty. If X intersects the α part, then there’s a least element of
that intersection, which is the least element of X. Otherwise X is disjoint from the α part. Since
X is entirely contained in the β part and β is well-founded there’s a least element of X. �

Proposition 11. Ordinal addition is associative: (α+ β) + γ = (α+ β) + γ.

Proof. Draw a picture :) �

On the other hand, ordinal addition is not commutative. In general, α+β 6= β+α. For example,
let’s compare ω + 2 to 2 + ω:

ω + 2 = © © © © · · ·︸ ︷︷ ︸
ω

© ©︸ ︷︷ ︸
2

6= ω

2 + ω = © ©︸ ︷︷ ︸
2

© © © © · · ·︸ ︷︷ ︸
ω

= ω

We can also multiply. For example, ω ·ω should be ω many copies of ω. You can imagine laying
them end to end, but it’s sometimes clearer to think of it as a two dimensional grid.

...

© © © © · · ·
© © © © · · ·
© © © © · · ·
© © © © · · ·

The order follows the usual order in English of top to bottom then left to right.

Definition 12. Let α and β be ordinals. Then α ·β is the ordertype of the cartesian productα×β
equipped with the lexicographic order : (a0, b0) ≤ (a1, b1) if b0 < b1 or b0 = b1 and a0 ≤ a1.

This is called lexicographic order because it’s like how you compare words in a dictionary: look
at the first letter, than the next and so on. But we start at the end of the word, rather than the
beginning. One reason is to make this definition match the picture—the second coordinate is the
vertical axis we go top-down before we go left-right. Another reason for this will become clear
later when we see an alternate way to define multiplication by recursion. This order for comparing
matches what you get from the recursive definition.

Proposition 13. α · β is an ordinal.

Proof. That it’s a linear order is straightforward. To see it’s well-founded, suppose X ⊆ α×β. Let
X1 ⊆ β be the set of second coordinates of elements of X. Because β is a well-order X1 has a least
element, call it b. Now let X0 ⊆ α consist of all a ∈ α so that (a, b) ∈ X. Then X0 has a least
element, call it a. So then (a, b) must be the least element of X. �
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Read α · β as β many copies of α. For example, let’s compare 2 · ω and ω · 2. It’s easier to see if
we draw end-to-end instead of in a grid.

2 · ω = © ©︸ ︷︷ ︸
2

© ©︸ ︷︷ ︸
2

© ©︸ ︷︷ ︸
2

© ©︸ ︷︷ ︸
2

· · · = ω

ω · 2 = © © © © · · ·︸ ︷︷ ︸
ω

© © © © · · ·︸ ︷︷ ︸
ω

6= ω

This example shows that ordinal multiplication is not commutative. It is, however, associative.

Proposition 14. Ordinal multiplication is associative. If α, β, γ are ordinals then (αβ)γ = α(βγ).

Proof. Draw a picture. If you go with the grid picture, you need to draw a three dimensional grid.
If you go with the end-to-end picture it’s a matter of reshuffling groupings. If this is hard to see
pictorally, we’ll later give a different but equivalent definition of multiplication and you’ll produce
a more symbolic proof as a problem for this chapter. �

Exercises.

(1) Explicitly write down infinite descending sequences in each of these orders: Z, Q, and R.
What kind of options do you have for each?

(2) Check that α+ β and α · β are linear orders.
(3) Draw pictures of the following ordinals:

• ω + 4
• ω · 3 + 2
• ω · ω + ω · 2
• ω · ω · ω
• ω · ω · ω · ω + 1
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3. Comparing ordinals

It seems like every math class has a part where you do a bunch of finicky work to prove a big
theorem. This section is that part of this class. The big theorem we will see is that the natural
ordering on ordinals is itself a well-order.

Here’s two ways you might try to compare ordinals. One would be to say that α is smaller than
β if you can find a copy of α inside β. Another would be more stringent and insist the copy of
α has to be at the beginning of β, not somewhere in the middle. It will turn out that these two
different ideas end up giving the same notion.

This definition captures the first idea of how to compare orders.

Definition 15. Let α and β be ordinals. Say that α ≤ β if there is an order embedding f : α→ β.

Although I used a symbol ≤ reserved for order, it’s not immediately clear that this really is an
order. That ≤ is reflexive and transitive is straightforward (why?), but why is it antisemmetric?
Why does it have trichotomy?

Maybe it’s easier to check these properties if we instead insist that we embed α into the beginning
of β.

Definition 16. An initial segment of an linear order (X,≤) is a set I ⊆ X so that I is closed
under <: if x < y ∈ I then x ∈ I. If I 6= X we call it a strict initial segment.

For example, the initial segments of N are the sets

{x ∈ N : x < n} = {0, 1, . . . , n− 1}.

Lemma 17. For ordinals α and β, the following are equivalent:

(1) α ≤ β; and
(2) There is an order embedding of α into β whose range is an initial segment of β.

Proof. (2⇒ 1) Immediate. (Why?)
(1⇒ 2) It suffices to see that if A ⊆ β then A, inhereting the order from β, is isomorphic to an

initial segment of β. (Why?) I’ll give two proofs of this. The first will go by tranfinite recursion
while the second will avoid this.

Argument by transfinite recursion: If A = ∅, this is trivial. So suppose A is nonempty. Here’s
the idea: map the least element of A to the least element of β, then the next element of A to the
next element of β, and so on until you run out of space. If A is finite or a copy of ω, then this
is just ordinary recursion on N. But we might have to go further. We can do this: because β is
well-ordered, at any stage we haven’t exhausted A then there’s always a smallest unused element
a of A. And there’s a smallest unused b ∈ β to be part of the range. So send b to a to continue
building. Because we can always extend, this gives an embedding of A onto an initial segment I of
β, so A is isomorphic to I.

Other argument: Let X be the set of all x ∈ A so that there is no embedding of A ↓ x = {a ∈
A : a ≤ x} onto an initial segment of β. If X = ∅ then we’re done. Suppose otherwise towards
contradiction. Then, because A is well-ordered there is a smallest element of X, call it m. By
minimality, if x < m there is an embedding fx of A ↓ x onto an initial segment Ix of β.

Claim. For any x < m and any y ∈ A ↓ x, we have fx(y) ≤ y.

Proof. Suppose this isn’t true for some x. Then there is a least y ∈ A ↓ x where this fails, i.e.
where fx(y) > y. By minimality if y′ < y then fx(y′) ≤ y′ < y < fx(y). But then Ix skips over y,
and so cannot be an initial segment of β. Contradiction. �
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Claim. For any x0, x1 < m and any y < x0, x1 we have fx0(y) = fx1(y).

Proof. Again by contradiction. Suppose this isn’t true for some x0 and x1. Then there’s a least y
so that fx0

(y) 6= fx1
(y). By minimality fx0

(y′) = fx1
(y′) for all y′ < y. In order for Ix0

and Ix1
to

both be initial segments it must be that fx0(y) is the smallest element of β \ {fx0(y′) : y′ < y}, and
similarly for x1. But these are the same sets, so it must be fx0(y) = fx1(y). Contradiction. �

As a consequence, if we define f =
⋃
x<m fx then f is a function with domain {x ∈ A : x < m}

and range some initial segment I ⊆ β. Indeed, I must be a strict initial segment. Otherwise, some
x < m would get mapped to m, but then f(x) > x, a contradiction. But now we can see how to
embed all of A ↓ m onto an initial segment of β: we already can just use f for x < m and then we
map m onto the least element of β \ I.

By definitionm doesn’t allow such an embedding of A ↓ m, so our assumption thatX is nonempty
must be false. In other words, for any x ∈ X there is an embedding fx of A ↓ x onto an initial
segment Ix ⊆ β.

Claim. For any x0 and x1 in A we have that fx0
and fx1

agree on their common domain.

Proof. Exactly the same as the previous claim. �

Finally, we can see how to embed all of A onto an initial segment of β: simply use f =
⋃
x∈A fx.

This is a function by the claim, and it’s an order isomorphism onto the initial segment I =
⋃
x∈A Ix.

Done, finally. �

I think these arguments demonstrate the utility of transfinite recursion—recursion beyond the
finite. We could avoid it, but at the cost of using well-foundedness over and over in proofs by
contradiction within proofs by contradiction. To establish more basic facts about how to compare
ordinals, it will be useful to use transfinite recursion again. To that end, let me introduce the idea.
And we will circle back later to get a more rigorous footing.

The short answer is that transfinite recursion is just like ordinary recursion on N, except longer.
Less briefly, when we proved why recursion on N is valid what we used is that N is a well-order.
The same works for any well-order. The way it works is, at a partial stage in the construction you
have built some function F up to a strict initial segment I of an ordinal α. By well-foundedness,
there is a smallest unused stage x ∈ α \ I. To continue the recursive construction you have to say
what F (x) is. To check that this process is valid and really does give a function F with domain α,
we again use well-foundedness. If it didn’t work, there would be a smallest stage x ∈ α for which
it didn’t work. But we know we can always continue one more step, so contradiction.

Let’s put this to use to prove some more facts about comparing ordinals. Let me introduce some
new notation first.

Definition 18. Let f : X → Y be a function and X0 ⊆ X. Then f ′′X0 = {y ∈ Y : y = f(x)
for some x ∈ X0} is the image of X0 under f . We use this notation, rather than f(X0) as you
may have seen in another class, as later we will be dealing with lots of sets whose elements are also
subsets. So we need to distinguish f(x) as the function of the element x of the domain versus the
image f ′′x of the subset x of the domain.2

Proposition 19. ≤ has trichotomy: if α and β are ordinals then either α ≤ β or β ≤ α.

2Another notation one sees for the image of a set under a function is f [X0].
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Proof. Suppose β 6≤ α, i.e. that there is no embedding of β into α. We now define an embedding of
α into β by transfinite recursion along α. At a partial stage, we have constructed an embedding fI
of an initial segment I ⊆ α onto an initial segment of β. We know that β \fI ′′I must be nonempty;
for if it were empty then f−1I : β → α would be an embedding of β into α, contradicting that
β 6≤ α. So we have space to keep going. If x is the least element of α \ I and y is the least element
of β \ fI ′′I, then map x to y to continue the construction onto the next step.

Continuing this process through all of α gives an embedding f : α→ β, and so α ≤ β. �

Let me remark on the utility of working with embeddings onto initial segments, rather than
arbitrary embeddings. Consider trying to embed ω + ω into itself. If you allowed an arbitrary
embedding, you might map the first copy of ω into the second copy of ω—send the n-th element
to the n-th element of the second copy. But then when it comes time to deal with the second copy
of ω there’s no space left. This problem is avoided if we don’t leave a bunch of blank space at the
beginning of the construction.

Just like recursion had a sister in induction, so too does transfinite recursion have a sister in
transfinite induction.

Theorem 20 (Transfinite Induction). Suppose α is an ordinal and X ⊆ α is a set satisfying the
property that for all x ∈ α, if every y < x is in X then x ∈ X. Then X = α.

This gives us a proof technique to prove a property ϕ(x) is true for all x ∈ α. Namely, consider
arbitrary x ∈ α and assume every y < x has ϕ(y). If you can prove ϕ(x), then you are done.

Like transfinite recursion this is a consequence of well-foundedness. Let’s take this theorem on
faith now, and circle back to its proof later.

Proposition 21. Let α ≤ β be ordinals. Then the embedding of α onto an initial segment of β is
unique.

Proof. We prove this by transfinite induction. Suppose f : α→ β and g : α→ β are two embeddings
of α onto an initial segment of β. Fix x ∈ α and suppose that f(y) = g(y) for all y < x. In order
for ran f to be an initial segment, it must be that f(x) is the smallest element of β \{f(y) : y < x}.
And similar is true for g(x). Thus f(x) = g(x). So by induction f(x) = g(x) for all x ∈ α. �

Corollary 22. There is no embedding of an ordinal α onto a strict initial segment of itself.

Proof. The identity is an embedding of α onto an initial segment of itself, so it must be the only
one. �

Proposition 23. ≤ is antisymmetric: if α ≤ β ≤ α then α = β.

Note that α = β means that α and β are isomorphic. (We’re abusing notation a little here:
the first α and β refer to the equivalence classes while the second refer to arbitrary orders in those
classes. It’s fine.)

Proof. Suppose α and β are not isomorphic. Let f : α → β be an embedding of α onto an initial
segment of β and g : β → α be an embedding of β onto an initial segment of β. Because α 6∼= β at
least one of these embeddings must be an embedding onto a strict initial segment. Without loss of
generality say that it’s f . Then g ◦ f : α→ α is an embedding of α onto a strict initial segment of
itself. That’s impossible. �

Altogether we have just finished proving:
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Lemma 24. ≤ is a linear order on the collection of ordinals. �

And now we come to a big result about ordinals. Let’s call this one a theorem, to highlight its
importance.

Theorem 25. Any ordinal α is isomorphic to the set of ordinals < α under the ≤ relation on
ordinals.

Proof. Let A be the set of ordinals < α. By the previous proposition for each β < α there is a
unique bβ ∈ α so that β embeds onto {a ∈ α : a < bβ}. Define f : A→ α as f(β) = bβ . I claim f is
an isomorphism. There’s two things to check: (1) the range of f is all of α, and (2) that β0 ≤ β1 if
and only if f(β0) ≤ f(β1).

(1) If b ∈ α then B = {a ∈ α : a < b} is a well-order < α, call its ordertype β. The identity map
on B is an embedding of B onto an initial segment of α. Now use the uniqueness of embeddings of
well-orders onto initial segments to conclude f(β) = b.

(2) Suppose β0 ≤ β1 but f(β0) > f(β1). Because βi ∼= {a ∈ α : a < f(βi)}, for i = 0, 1, we
get an embedding of β1 onto a strict initial segment of β0. Composing this embedding with the
embedding of β0 onto an initial segment of β1 we get that β1 embeds as a strict initial segment of
itself. But we know that’s impossible.

Conversely, suppose f(β0) ≤ f(β1). Again βi is isomorphic to {a ∈ α : a < f(βi)}, and so we
get β0 ≤ β1. �

With this theorem in hand, we will identify an ordinal α with the set of ordinals < α. Along
with that we will use the letters reserved for ordinals–α, β, . . .—for elements of ordinals, because
they themselves are ordinals! So, for example, β ∈ α means β < α. Let me put this in a definition
so that it stands out.

Definition 26 (Mostowski, Second definition of ordinal). An ordinal α is the set of all ordinals
< α.

This definition may look circular, but once you know the order on ordinals is a well-order—the
next corollary—you can think of it as a definition by transfinite recursion. At stage 0 you have no
ordinals yet, so your first ordinal 0 is the empty set. Then at stage 1 your new ordinal is 1 = {0},
at stage 2 your new ordinal is 2 = {0, 1}, at stage ω your new ordinal is {0, 1, 2, . . . , n, . . .}, and so
on.

Corollary 27. The relation ≤ is well-founded on the ordinals. Thus ≤ is a well-order.

Proof. Consider a nonempty collection X of ordinals. Fix α ∈ X and look at X ∩ α = {β ∈ X :
β < α}. If X ∩ α is empty then α is the least element of X. Otherwise, α ∩ X ⊆ α has a least
element β because α is well-founded. Now let’s see that β is also the least element of X. To this
end, fix arbitrary γ ∈ X. By trichotomy there are two options: γ < α or γ ≥ α. For the latter, we
have β < α ≤ γ. For the former, we have β ≤ γ because β is the least element of X ∩ α. Either
way β ≤ γ and so we have seen β is the least element of X. �

This is huge. We now know that not only are individual ordinals well-orders, but that the ordering
of ordinals is itself a well-order. Since we can do transfinite induction/recursion on well-orders, we
can do transfinite induction/recursion on the collection of all ordinals.3

3If you’re worried about a vicious circularity here, hold onto that worry. We’ll address it in Chapter 3.



10 KAMERYN J. WILLIAMS

We’ll get a lot of use out of this important fact soon, but let’s establish one final basic property
of the order on ordinals to close out the section. If you’ve taken real analysis this definition should
look familiar.

Definition 28. Let X be a set of ordinals. The supremum of X, if it exists, is the least upper
bound of X. That is, it is the ordinal α so that β ≤ α for all β ∈ X and if α′ is any other ordinal
with that property than α ≤ α′. Denote the supremum of X as supX.

Lemma 29. Let X be a set of ordinals. Then supX exists.

This proof is an example of why identifying α with the set of ordinals <α is notationally conve-
nient.

Proof. For your set X of ordinals set supX =
⋃
α∈X α. Let’s see that this is the supremum of X.

First, let’s see that it really is an ordinal, just to get comfortable with thinking of ordinals as
sets of smaller ordinals. Each α ∈ X is closed under <, so supX is as well. In other words,
supX = {β : β < supX} and so it’s an ordinal.

To see it’s an upper bound, we need to see that α < supX for all α ∈ X. If α is the maximum
of X, if it exists, then supX = α Otherwise, α < β for some β ∈ X and so α < supX. To see it’s
the least upper bound, suppose β is an upper bound for X; that is, α ≤ β for all α ∈ X. Suppose
toward a contradiction that β < supX. Then β ∈ supX and so β ∈ α for some α ∈ X. But that
means β < α, a contradiction. So supX ≤ β. �

Alternatively, you could have proved this by showing that the set of upper bounds for X is
nonempty and use well-foundedness to conclude there’s a least upper bound. You can think of the
union construction of supX is a slick way to get an upper bound for X.

Exercises.

(1) Check that α < α+ β for any ordinals α, β with β > 0.
(2) Check that α < α · β for any ordinals α, β with β > 1.
(3) Are these true if you swap the order of the operation? That is, must α always be strictly

less than β + α and β · α?
(4) What is the supremum of the set of finite ordinals?
(5) Check that if a set X of ordinals has a maximum α then supX = α.
(6) Write down two different sets X of ordinals so that supX 6∈ X.
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4. Transfinite induction and recursion, part 1: ordinal arithmetic

The big result last section was that the ordinals are well-ordered. Thus, we can do transfinite
induction and recursion along all the ordinals. Let’s do that now. Induction first, then recursion.

Definition 30. Let Ord denote the collection of all ordinals. So “α ∈ Ord” is shorthand for saying
“α is an ordinal”.

Theorem 31 (Transfinite Induction on Ord, first form). Suppose X is a collection of ordinals with
the property that for any α ∈ Ord if every β < α is in X then α ∈ X. Then, X = Ord.

Proof. To no one’s surprise, this is proved by contradiction using well-foundedness. Suppose toward
a contradiction that X 6= Ord. Then Ord \X is nonempty, so it has a least element α. But every
β < α is in X and so α ∈ X. Contradiction. �

With induction on N, we had an alternate way of formulating it based on the base case of 0 and
the +1 successor case. A similar idea works for transfinite induction, except we need one more case,
the limit case. To illustrate the necessity of this case, observe that ω isn’t obtained by adding 1 to
a small ordinal.

Definition 32. Let α be an ordinal. It is in one of three cases, defined as follows.

• (Zero) α is empty. This only happens when α = 0.
• (Successor ordinal) α is nonempty and has a maximum.
• (Limit ordinal) α is nonempty and has no maximum.

Let’s check a couple basic properties.

Proposition 33. If α is a successor ordinal then α = β + 1 where β is the largest ordinal ∈ α.

Proof. From last section we know that β = {γ ∈ α : γ < α}. So to get to α we only need to add
one element, namely β itself. That is, α = β + 1. �

Proposition 34. If γ is a limit ordinal then γ = sup γ.

Proof. We check that γ is the least upper bound of the ordinals < γ. That it’s an upper bound is
trivial. To see it’s least, suppose β < γ is an upper bound. But there’s no maximum to the ordinals
< γ, so β < α for some α < γ. Contradiction. �

We’re now in a position to see the other formulation of transfinite induction.

Theorem 35 (Transfinite Induction on Ord, second form). Suppose X ⊆ Ord satisfies these three
properties:

• (Zero case) 0 ∈ X;
• (Successor case) If α ∈ X then α+ 1 ∈ X.
• (Limit case) If γ is a limit ordinal and every α < γ is in X then γ ∈ X.

Then, X = Ord.

Proof. Let’s check that if X has those properties then X has the property from the first form of
transfinite recursion. To this end, suppose α ∈ Ord and every β < α is in X. There’s three cases
to consider. (Zero case) If α = 0 then α ∈ X. (Successor case) We know α = β + 1 where β is the
maximum ordinal in α. Since β ∈ X we conclude α = β + 1 ∈ X. (Limit case) There’s nothing to
check. The statement in the limit case is just the first form of transfinite recursion, just with the
restriction we’re only looking at limit ordinals.
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Whichever case we are in, we were able to conclude α ∈ X. So by the first form of transfinite
recursion we conclude X = Ord, as desired. �

Just like the well-foundedness of N also gave us recursion, we can do transfinite recursion on the
ordinals. Let me state it a bit formally, to match how we did it for recursion on N.

Theorem 36 (Transfinite recursion on Ord). Suppose G(α, f) is a function whose inputs are an
ordinal α and a function f whose domain is α. Then there is a function F with domain Ord so
that F (α) = G(α, F � α).

Compare this to the recursion theorem on N. To say how to continue the recursion at stage α
the information we have access to is α and the partial construction below α. What we do with that
information is captured by the function G. Like with induction, it’s commonly helpful to separate
out recursion into zero, successor, and limit cases. Often you don’t need the full information of
F � α, and you define what happens at successor cases just in terms of the one previous stage. But
when defining the limit case you do want everything done before.

We’ll put off the proof of this theorem. For now, let’s see some examples of how to use transfinite
induction and recursion. Begin by looking again at ordinal arithmetic.

We can give alternate definitions of ordinal addition and multiplication using transfinite recur-
sion. And proving these are equivalent to the previous definitions are in the problem set for this
chapter. We also can newly introduce ordinal exponentiation. These definitions capture the idea
of addition being repeatedly adding 1, multiplication being repeated addition, and exponentiation
being repeated multiplication.

Definition 37. Let α be an ordinal. Then α + 1 is the successor of α, the smallest ordinal > α.
Namely, α+ 1 = α ∪ {α}.

The explicit definition of the successor works because the only ordinals < α+ 1 are the ordinals
< α and α itself.

Definition 38. Define α+ β, α · β, and αβ by recursion on β. α+ β is defined as:

• α+ 0 = α;
• α+ (β + 1) = (α+ β) + 1;
• If γ is limit then α+ γ = supβ<γ α+ β.

• α · 0 = 0;
• α · (β + 1) = (α · β) + α;
• If γ is limit then α · γ = supβ<γ α · β.

• α0 = 1;
• αβ+1 = αβ · α;
• If γ is limit then αγ = supβ<γ α

β .

Observe that the three limit cases are essentially the same. Indeed, the limit cases for transfinite
recursion often end up being very samey.

For a quick example of working with these definitions, let’s confirm that α · 1 = 0. By definition,

α · (0 + 1) = (α · 0) + α = 0 + α = α.

There’s a small gap in this: we don’t yet know that 0 + α = α, we only know that α + 0 = α.
We can fill this gap, along with prove some other basic properties of ordinal arithmetic, by using
transfinite induction. In general, if you define a mathematical object by transfinite recursion then
transfinite induction is a good proof technique to use for it.
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Proposition 39. Let α, β, γ be arbitrary ordinals. Then:

(1) Left additive identity.
0 + α = α

(2) Addition is associative.
(α+ β) + γ = α+ (β + γ)

(3) Annihilator for multiplication.
α · 0 = 0 = 0 · α

(4) Left multiplicative identity.
1 · α = α;

(5) Multiplication is associative.
(α · β) · γ = α · (β · γ);

(6) Multiplication is right-distributive over addition.
α · (β + γ) = α · β + α · γ;

Proof. I prove (1) and (2), with the rest left as problems for this chapter.
(1) By induction on α. (Zero case) By definition 0 + 0 = 0. (Successor case) 0 + (α + 1) =

(0 + α) + 1 = α+ 1. (Limit case) Let δ be limit. Then 0 + δ = supα<δ 0 + α = supα<δ α = δ.
(2) By induction on γ. (Zero case) (α + β) + 0 = α + β and α + (β + 0) = α + β. (One case)

(α+ β) + 1 = α+ (β + 1) by definition. We did this as a separate base case because it will be used
to prove the successor case.

(Successor case) We have (α+ β) + (γ + 1) = ((α+ β) + γ) + 1. But (α+ β) + γ = α+ (β + γ)
so this is (α+ (β + γ)) + 1. For the other side, α+ (β + (γ + 1)) = α+ ((β + γ) + 1). By the one
case we get this is (α + (β + γ)) + 1; namely, α is the first summand in the one case and β + γ is
the second summand. So the two sides are equal.

(Limit case) Suppose γ is limit. Then

(α+ β) + γ = sup
δ<γ

(
(α+ β) + δ

)
= sup

δ<γ

(
α+ (β + δ)

)
= α+ sup

δ<γ

(
β + δ

)
= α+ (β + γ).

There is a small gap to fill here: why can we pull the α+ outside of the sup? This is of independent
interest, so let’s put it outside of this proof. �

Let’s fill that gap. To motivate the definition coming up, think of sup as being like limits from
calculus. In calculus you saw that you can push/pull continuous functions inside/outside of limits.
This is why, for example,

lim
x→a

f(x) + g(x) = lim
x→a

f(x) + lim
x→a

g(x).

+ is continuous in each coordinate, so it’s equivalent to add either before or after the limit (supposing
all limits exist, of course). We want something similar for the ordinals. It’s convenient to restrict
attention to increasing functions—those functions f so that α ≤ f(α) for all α ∈ dom f . Note that,
unlike R, it’s only at limit ordinals that there’s anything interesting going on with continuity.

Definition 40. Let f be an increasing function whose domain is either an ordinal or Ord. Then,
f is continuous if given any limit ordinal γ in dom f we have

f (γ) = sup
α<γ

f(α).
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Observation 41. Addition, multiplication, and exponentiation are continuous in the right coordi-
nate. That is, all of the following are true for a limit ordinal γ and an arbitary ordinal β:

β + γ = sup
α<γ

β + α

β · γ = sup
α<γ

β · α

βγ = sup
α<γ

βα

Proof. These are just the limit cases of the definitions. Done. �

To ward off a miscunderstanding: Observe that the arithmetic operations are not continuous in
the second coordinate. For example,

ω + 1 6= sup
n<ω

n+ 1 = ω.

Now let’s prove the lemma that fills the gap. First, a definition. If γ is a limit ordinal and
X ⊆ γ, then X is cofinal in γ if for every α < γ there is β ∈ X with α ≤ β. Note that if X ⊆ γ is
cofinal in γ then supX = γ. For example, any infinite set of natural numbers is cofinal in ω.

Lemma 42. Let f be an increasing, continuous function and suppose dom f contains a limit ordinal
γ and all ordinals < γ. Then for any cofinal X ⊆ γ we have

sup
α∈X

f(α) = f(γ) = f

(
sup
α<γ

f(α)

)
.

To see why this lemma fills the gap from above: if γ is limit then β + γ is also limit. By the
continuity of + and because X = {β + δ : δ < γ} is cofinal in β + γ we get

sup
δ<γ

α+ (β + δ) = sup
ζ<β+γ

α+ ζ = α+ (β + γ).

Proof. For convenience write σ = supα∈X f(α). The key point is, beacuse f is continuous we have
that f(γ) = supα<γ f(α). This immediately gives that σ ≤ f(γ), because these are defined as
suprema over X ⊆ γ. For the other direction of the inequality, let α < γ. By the cofinality of X
there is δ ∈ X with δ ≥ α. Because f is increasing, f(α) ≤ f(δ). So σ ≥ f(δ) ≥ f(α). That is,
σ is an upper bound for the set of f(α) with α < γ. Thus σ must be ≥ their least upper bound
f(γ). �

Remark 43. Ordinal multiplication does not distribute across addition on the left. As a counter
example, consider (ω + 2) · 2. If you draw a picture of this product—one copy of ω + 2 followed by
another—you’ll see the product is equal to ω · 2 + 2. On the other hand, ω · 2 + 2 · 2 = ω · 2 + 4,
which is different.

Now let’s see how ordinal arithmetic plays with the order relation on ordinals. First let’s get a
characterization of ≤ based on addition rather than embeddings.

Proposition 44. α ≤ β if and only if there is an ordinal γ so that α + γ = β. And α < β if and
only if this γ is not 0. Moreover, this γ is unique.

Since we defined ≤ in terms of embeddings, this proposition is most easily seen if we use the
definition of addition from Section 2, rather than the recursive definition.
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Proof. (⇒) Let γ be the ordertype of β \ α. Then α+ γ = β. And if it happened that α < β then
β \ α is nonempty so γ 6= 0.

(⇐) We need to see that α ≤ α + γ. This is straightforward: map α to the copy of α at the
beginning of α + γ. And if we had γ 6= 0 then this would embed α onto a strict initial segment of
α+ γ whence we would get α < α+ γ.

(Uniqueness) This follows from what we just proved. If we had α+γ0 = α+γ1 but γ0 < γ1 then
we would have α+γ0+δ = α+γ1 for some nonzero δ. But then we would also get α+γ0+δ = α+γ0
and so α+ γ0 + δ embeds onto a strict initial segment of itself. Impossible. �

Now that we have this proposition it’s much easier to prove facts about ≤ using induction.

Proposition 45. If α < β then γ + α < γ + β and if γ 6= 0 then γ · α < γ · β.

Proof. (Addition) Assume α < β and fix δ > 0 so that α+ δ = β. Then γ + α+ δ = γ + β whence
we get that γ + α < γ + β.

(Multiplication) We do this by induction on β. The base case is β = α+1. Then, γ ·β = γ ·α+γ.
Because γ 6= 0 we get that γ · β > γ · α.

For the successor case, assume γ · α < γ · β. So it is enough to see that γ · β < γ · (β + 1). This
is similar to the base case: γ · (β + 1) = γ · β + γ > γ · β because γ > 0.

For the limit case, assume β is limit and γ ·α < γ · δ for all α < δ < β. But γ ·β is the supremum
of the γ · δ and so by the definition of supremum γ · δ ≤ γ · β for these δ. So by transitivity
γ · α < γ · β. �

We can add or multiply on the right, but then we can only guarantee we get ≤, not necessarily
strict inequality. For example, 2 < ω. But 2 + ω · ω = ω · ω and ω + ω · ω = ω · (1 + ω) = ω · ω.

Proposition 46. If α ≤ β then α+ γ ≤ β + γ and α · γ ≤ β · γ.

Proof. By induction on γ. We do the argument for addition then for multiplication.
(Zero case, addition) The base case α+ 0 ≤ β + 0 is saying α ≤ β which we assumed.
(Successor case, addition) Suppose α + γ ≤ β + γ. Then the embedding from α + γ onto an

initial segment of β + γ is easily extended to embed α+ γ + 1 onto an initial segment of β + γ + 1:
just map the new point to the smallest unused point. We added a new point in the codomain, so
we know there’s space.

(Limit case, addition) Suppose γ is limit and α+ δ ≤ β + δ for all δ < γ. If it were not the case
that α+ γ embeds into β+ γ, then by well-foundedness there would be a smallest point in α+ γ so
that the embedding cannot be extended to have that point in the domain. This amounts to saying
there must be δ < γ so that there is no embedding from α + δ to β + γ. But we assumed there is
an embedding of α+ δ to β + δ < β + γ.

(Zero case, multiplication) α · 0 ≤ β · 0 because 0 = 0.
(Successor case, multiplication) Suppose α · γ ≤ β · γ. Then α · (γ + 1) = α · γ + α and

β · (γ+ 1) = β · γ+β. To extend the embedding from α · γ to β · γ just map the new α many points
in the domain inside the β many new points in the codomain. This is possible because α ≤ β.

(Limit case, multiplication) Exactly like the limit case for addition, except with · instead of +
everywhere. �

There are properties of exponentiation akin to these properties about addition and multiplication.
See the problem set for this chapter for the statement of these properties.

In one of the problems for this chapter you prove that there are ordinals which are not countable.
By well-foundedness, this means there is a smallest ordinal which is not countable. Let’s call it ω1,
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since that’s its usual name. Observe that ω1 is the supremum of the countable ordinals (why?). I
want to close out this section by giving you an idea of just how big ω1 is.

Lemma 47. Let 〈αn : n ∈ ω〉 be a countable sequence of countable ordinals. Then supn αn is
countable.

Proof. Recall that the supremum of a set of ordinals is their union (where as usual we identify an
ordinal with the set of smaller ordinals). So this is simply a consequence of countable unions of
countable sets being countable. �

Using this lemma we can see that larger and larger ordinals are countable. To start, we know
ω is countable because ω is order isomorphic to N. And this lemma then tells us that ω + ω is
countable. Similarly ω · ω and ωω are also countable. (Why?) We can stretch this even further.

Definition 48. An ordinal α is called a ε-number if α = ωα. The smallest ε-number is called ε0,
the next is ε1, and in general the αth ε-number is called εα.

Here’s a way to characterize ε0 from below.

Proposition 49. For a natural number n, set

ω ↑ n = ωω
. .

.
ωω

︸ ︷︷ ︸
n many

.

Then, ε0 = ω ↑ ω = supn∈ω ω ↑ n.

Proof. First we see that ε0, by that definition, is an ε-number:

ωε0 = sup
n∈ω

ωω↑n = sup
n∈ω

ω ↑ (n+ 1) = ε0.

To see it’s the smallest ε-number it’s enough to know that if α ≤ ω ↑ n for some n then ωα ≤
ω ↑ (n + 1). But that’s an instance of one of the properties of exponentiation in the problem set
for this chapter. (Namely, the property that increasing the exponent increases the value of the
exponentiation.) �

Since ε0 is the supremum of a countable set of ordinals we know that it’s countable. Working
similarly you can show that ε1 is also countable, as is εα for any countable ordinal α.

How far can we push this?

Definition 50 (Informal). An ordinal α is called computable if there is a computer program which
computes a relation on N of ordertype α. Set ωCK

1 , the Church–Kleene ordinal, to be the smallest
computable ordinal.

You can make this definition formal by giving a formal definition of computability.

Proposition 51. ωCK
1 is countable.

Proof. There are countably many computer programs (why?), so the supremum of the computable
ordinals is countable. �

If you took Theory of Computation last semester: This proposition relativizes to an oracle. So,
for example, there are countable many ordinals computable from an oracle for the halting set and
their supremum is also countable. ω1 is larger than all of them.
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Given more powerful set-theoretic techniques you can construct larger and larger countable
ordinals. Here’s two ways to think about what this means: (1) ω1 is really big and (2) you can find
a lot of complexity in countable objects.

Next chapter we look beyond the countable, and investigate the cardinals.

Exercises.

(1) Explain why it’s fine to do transfinite induction starting with a base case > 0.
(2) Explain why ordinal subtraction doesn’t make sense. For example, why doesn’t ω−1 make

sense?
(3) Explain why ordinal division doesn’t make sense.
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5. Transfinite induction and recursion, part 2: justifying transfinite recursion

Now that we’ve had some time to play around with transfinite recursion and induction, let’s
circle back to some proofs we skipped. As a warmup let’s see again why transfinite induction along
an ordinal is valid.

Theorem 52 (Transfinite induction on an ordinal). Let α be an ordinal. Suppose X ⊆ α has the
property that for all β < α if (every γ < β in X implies β ∈ X) then β ∈ X. Then, X = α.

Proof. Suppose toward a contradiction that X 6= α. Then α \X is nonempty. By well-foundedness
it has a least element, call it β. By the leastness of β we have γ ∈ X for every γ < β. So β ∈ X.
Contradiction. �

The proof for transfinite recursion is similar but more complicated. Like with ordinary induc-
tion/recursion on N, the proof for recursion is more complicated because it involves the construction
of an object. Fortunately, the same idea works.

Theorem 53 (Transfinite recursion on an ordinal). Fix an ordinal α. Suppose G(β, f) is a function
whose inputs are an ordinal β < α and a function f whose domain is β. Then there is a function
F with domain α so that F (β) = G(β, F � β) for all β < α.

Proof. It’s convenient for the proof to assume that α is a limit ordinal. This suffices to also prove
the successor case because you can extend a recursion on a successor ordinal to a recursion on the
next limit ordinal setting G(β, f) = 73 for every β outside the original domain. Then throw it away
afterward. And we get the case for α = 0 because the only function with domain 0 is the empty
function.

As with recursion on N we define F based on the existence of partial solutions to the recursion.
Say that a function f with domain β is a partial solution below β if f(γ) = G(γ, f � γ) for all γ < β.

Claim: Any two partial solutions agree on their shared domain. In particular, for each β there
is at most one partial solution below β.

Suppose f and f ′ are two partial solutions with a shared domain β. Use induction to prove
f(γ) = f ′(γ) for every γ < β. Namely, if f and f ′ agree below γ then f � γ = f ′ � γ. Then
f(γ) = G(γ, f � γ) and f ′(γ) = G(γ, f ′ � γ) are the same.

Claim: For every β there exists a partial solution below β.
By induction. The empty function is a partial solution below 0, establishing the zero case. For

the limit case, let fγ be the partial solution up to γ for each γ < β. By the previous claim we
know the fγ ’s agree on their common domain, so fβ =

⋃
γ<β fγ is a function. Then fβ is a partial

solution below γ.
For the successor case, let fβ be the partial solution below β. To extend to a partial solution

below β + 1 set fβ+1 = fβ ∪ {(β,G(β, fβ))}.
We can now define the full solution F . Namely, set F (β) = x if any partial solution f with β in

its domain has f(β) = x. This defines a function because all partial solutions agree, and its domain
is α because there are partial solutions below every β < α. (This is where it was convenient to
assume α is limit; for any β < α there’s a larger ordinal β′ still below α so a partial solution below
β′ will have β in its domain.) �

Theorem 54 (Transfinite recursion on Ord). Suppose G(α, f) is a function whose inputs are an
ordinal α and a function f whose domain is α. Then there is a function F with domain Ord so
that F (α) = G(α, F � α) for all ordinals α.
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Proof sketch. Do the same thing as for transfinite recursion on an ordinal α, except use Ord as your
domain. �

In Chapter 3 when we look at axioms for set theory we will come back to the issue of why
transfinite recursion is valid to identify just what axioms we use to prove these theorems.

Exercises.

(1) Check that the recursion theorem for N from Chapter 0 is the special case of the transfinite
recursion theorem for the ordinal ω.
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6. Transfinite induction and recursion, part 3: more examples

We formally stated transfinite recursion as being about building a function F . You can also
use transfinite recursion to build a sequence, because a sequence is just another way of writing a
function.

Definition 55. A sequence on an ordinal α is a function s with domain α. We write it as
〈sβ : β < α〉 where sβ = s(β). More generally, sequence on an index set I is a function with
domain I. We can also define a sequence on Ord.

Definition 56. Define a sequence 〈Vα : α ∈ Ord〉 by transfinite recursion.

• V0 = ∅;
• Vα+1 = P(Vα); and

• If γ is limit then Vγ =
⋃
α<γ

Vα.

This sequence will be important in Chapter 3. For now let’s just check a few of its basic properties.

Definition 57. A set x is transitive if z ∈ y ∈ x implies z ∈ x. Phrased in an equivalent way, x is
transitive if every element of x is a subset of x.

The name comes because the property looks like the definition of an order being transitive.

Proposition 58. Each Vα is transitive.

Proof. (Zero case) V0 = ∅ is vacuously transitive.
(Successor case) Suppose z ∈ y ∈ P(Vα). That is, y ⊆ Vα and so z ∈ Vα. By inductive

hypothesis Vα is transitive and so z ⊆ Vα. Done.
(Limit case) Consider limit γ and suppose z ∈ y ∈

⋃
α<γ Vα. Pick α < γ so that y ∈ Vα. By

inductive hypothesis z ∈ Vα and so z ∈ Vγ . �

Proposition 59. If α < β then Vα ∈ Vβ.

Proof. By induction on β. The base case β = α + 1 is because Vα ⊆ Vα. For the successor case
suppose Vα ∈ Vβ . By transitivity we have Vα ⊆ Vβ and so Vα ∈ P(Vβ). And the limit case is
trivial. (Why?) �

Corollary 60. If α ≤ β then Vα ⊆ Vβ.

Proof. If α = β this is trivial. If α < β then use the previous proposition plus the fact that Vβ is
transitive. �

Let’s see some more examples of transitive sets.

Proposition 61. Every ordinal is transitive.

Naturally, this only makes sense when we think of an ordinal α as the set of ordinals < α.

Proof. By induction on Ord. The base case is 0 = ∅ which was the previous base case. For the
successor case, if γ ∈ β ∈ α+ 1 = α ∪ {α} then either β ∈ α or β = α. If the former, by inductive
hypothesis γ ∈ α ⊆ α+ 1. If the former, then γ ∈ α ⊆ α+ 1. The limit case is identical to the limit
case of the previous proposition. �

Proposition 62. For any α the ordinals which appear in Vα are the ordinals <α. In symbols,
Vα ∩Ord = α.
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Proof. (Zero case) ∅ ∩Ord = ∅. Done.
(Successor case, ⊇) By inductive hypothesis Vα ∩Ord = α and so α ⊆ Vα+1 and α ∈ Vα+1. In

all, α+ 1 = α ∪ {α} ⊆ Vα+1.
(Successor case, ⊆) By transitivity it’s enough to see that α+ 2 6∈ Vα+1, for if α+ 2 ∈ β ∈ Vα+1

then by transitivity we’d have α + 2 ∈ Vα+1. By inductive hypothesis we have that α + 1 6∈ Vα.
So α+ 2 = (α+ 1) ∪ α+ 1 6∈ P(Vα).

(Limit case) Easy. �

Let’s see an example of transfinite recursion with a different flavor.
To state the result we’ll prove let me remind you of some definitions from linear algebra, spe-

cialized to the field Q. Recall that a Q-vector space is a set V equipped with a vector sum + and
a scalar multiplication of vectors by an element of Q, such that the axioms of a vector space are
satisfied. A basis for a vector space is a set of linearly independent vectors whose span is all of V .

Theorem 63. Suppose R has a well-order. Then R has a basis as a Q-vector space.

In case you haven’t thought of R as a Q-vector space before: the vector sum is just the usual
addition on R and scalar multiplication qx is just the usual multiplication of a rational q and a real
x. You can check that this satisfies the definition of a vector space.

Proof. Let κ be the smallest order-type of a well-order of R. Note that κ is a limit ordinal. (Why?)
Then there is a sequence 〈xα : α < κ〉 enumerating all the elements of R without repetition. We
will construct a basis for R using this sequence and transfinite recursion on κ.

We will inductively ensure that at a stage α we have built up a linearly independent set Bα
so that xβ ∈ spanBα for all β < α. For stage 0 that B0 = ∅ trivially satisfies this. For the
successor step, given Bα we need a larger linearly independent set Bα+1 with xα+1 ∈ spanBα+1.
If xα+1 ∈ spanBα already just set Bα+1 = Bα. Otherwise, set Bα+1 = Bα ∪ {xα+1}. For the limit
case just set Bα =

⋃
β<αBβ . Then Bα is linearly independent because a counterexample would

use finitely many vectors and so would imply that Bβ is not linearly independent for some β < α.
Finally, set B =

⋃
α∈κBα. Then every xα ∈ spanBα ⊆ spanB and B is linearly independent

because a counterexample would only use finitely many vectors and so would also have to be a
counterexample in some Bα, which is impossible by construction. �

Unfolding the definitions, here’s another to think of what we constructed. We built a sequence
〈bα : α ∈ κ〉 of reals so that any real x can be written uniquely in the form

x =
∑
i<n

qibαi
,

for qi ∈ Q and αi an ordinal.4

Exercises.

(1) Write down a definition for a sequence on Ord.
(2) Why is a set being transitive equivalent to saying its elements are subsets?
(3) Check the limit case of Proposition 62.

(Kameryn J. Williams) Bard College at Simon’s Rock, 84 Alford Rd, Great Barrington, MA 01230

E-mail address: kwilliams@simons-rock.edu
URL: http://kamerynjw.net

4Minor point: there’s some extra work to check that our basis consists of κ many reals, not fewer. After Chapter
2 you will be able to do this check.
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