MATH 355 PROBLEM SET CHAPTER 0: COUNTABLE SETS

KAMERYN J. WILLIAMS

Problem 1. [This problem uses concepts from real analysis, so if you have not taken that class you will probably find it challenging.] Follow this outline to reproduce Cantor's original 1874 proof that \mathbb{R} is not countable.

- (1) Suppose you have a sequence $\langle [a_n, b_n] : n \in \mathbb{N} \rangle$ of nested closed intervals getting smaller on both sides; that is, $a_n < a_{n+1} < b_{n+1} < b_n$ for all n. Prove that if $X = \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ then any $x \in X$ must not be any a_n nor any b_n .
- (2) Also prove that X is nonempty.
- (3) Explain how to produce a sequence ([a_n, b_n] : n ∈ N) of strictly nested closed intervals from a sequence (x_n : n ∈ N) of real numbers so that any number in the intersection X must not be any x_n.
- (4) Conclude that \mathbb{R} is not countable.

Problem 2. [This problem builds on the previous one and also uses concepts from real analysis.] Show that if $\langle x_n : n \in \mathbb{N} \rangle$ is dense in \mathbb{R} —meaning that for any open interval (a, b) there's some $x_n \in (a, b)$ —then the intersection X you obtain has a single element. Explain why for any real number y there's a sequence $\langle q_n : n \in \mathbb{N} \rangle$ of rational numbers so that doing this process with that sequence produces $X = \{y\}$.

Problem 3. Prove the infinitary De Morgan's Laws:

$$C \setminus \bigcup_{A \in \mathcal{X}} A = \bigcap_{A \in \mathcal{X}} C \setminus A$$
$$C \setminus \bigcap_{A \in \mathcal{X}} A = \bigcup_{A \in \mathcal{X}} C \setminus A$$

Problem 4. Prove that a countable union of countable sets is countable. That is, if $A_0, A_1, \ldots, A_n, \ldots$ are all countable sets, then so is

$$\bigcup_{n\in\mathbb{N}}A_n.$$

Problem 5. Consider the function $p : \mathbb{N}^2 \to \mathbb{N}$ defined as

$$p(a,b) = \frac{(a+b)(a+b+1)}{2} + b.$$

Prove that p is a bijection onto N. Prove that for any n there is a bijection $p_n : \mathbb{N}^n \to \mathbb{N}$ which is a polynomial.

Date: February 8, 2024.

KAMERYN J. WILLIAMS

Problem 6. For an element x in a linear order (X, \leq) , the successor of x, if it exists, is the smallest $y \in X$ so that y > x. Prove that if (X, \leq) is a linear order so that every element of X has a successor then \mathbb{N} order embeds into X.

Problem 7. If (X, \leq) is a linear order with a minimum and so that every element of X has a successor, then you can formulate a version of the +1 induction property for X. Let z denote the minimum of X and let s(x) denote the successor of $x \in X$.

• (+1 induction property) For any $Y \subseteq X$, if $z \in Y$ and for every $x \in X$ we have $x \in Y$ implies $s(x) \in Y$, then Y = X.

Prove that if X has the +1 induction property then X is order isomorphic to \mathbb{N} .

Problem 8. A linear order X is dense if given any x < y from X there is $z \in X$ so that x < z < y. And X has no endpoints if it has neither a minimum nor a maximum. Prove that if X is a countable dense linear order without endpoints then X is order isomorphic to \mathbb{Q} .

Problem 9. [This problem uses some terminology from graph theory.] The Rado graph is the unique up to isomorphism countable graph (G, E) satisfying the following property:

If A, B are finite and disjoint sets of vertices in G then there is a vertex v ∈ G \ (A ∪ B) so that a E v for all a ∈ A but b ∉ v for any b ∈ B.

Prove that any countable graph embeds into the Rado graph, where a graph embedding is a function $f: (H, E) \to (G, E)$ so that if $v E_H w$ if and only if $f(v) E_G f(w)$.

Problem 10. [This problem uses some terminology from algebra.] Prove that for any complex number z there is a countable algebraically closed field $K \subseteq \mathbb{C}$ which contains z.

(Kameryn J. Williams) BARD COLLEGE AT SIMON'S ROCK, 84 ALFORD RD, GREAT BARRINGTON, MA 01230 *E-mail address:* kwilliams@simons-rock.edu *URL:* http://kamerynjw.net