MATH 355 PROBLEM SET CHAPTER 1: ORDINALS

KAMERYN J. WILLIAMS

Problem 1. Let A be a set. Consider the collection of all ordinal numbers of well-orders whose domain is a subset of A, ordered by \leq . Call this collection of ordinals $\aleph(A)$. Prove that there is no injection $\aleph(A) \rightarrow A$. As a corollary derive that there is a well-order whose domain is not countable.

Problem 2. Prove that a linear order satisfying induction implies it is well-founded. That is, consider a linear order (X, \leq) . Assume that for any $Y \subseteq X$ if (for all $x \in X$ we have [if every y < x is in X then $x \in X$]), then Y = X. (Brackets added to make the logical structure clear.) Prove that X must be well-founded.

Problem 3. Prove that the definition of ordinal addition by transfinite recursion matches our first definition of ordinal addition.

Problem 4. Prove that the definition of ordinal multiplication by transfinite recursion matches our first definition of ordinal multiplication.

Problem 5. Use the recursive definition of ordinal arithmetic to prove these properties.

$$0 \cdot \alpha = 0;$$

$$1 \cdot \alpha = \alpha;$$

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma);$$

$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma;$$

Problem 6. Prove these properties of ordinal exponentation.

$$\begin{aligned} 0^{\beta} &= 0, & \quad if \ \beta \neq 0; \\ 1^{\beta} &= 1; \\ \alpha^{\beta} &< \alpha^{\gamma}, & \quad if \ 1 < \alpha \ and \ \beta < \gamma; \\ \alpha^{\gamma} &\leq \beta^{\gamma}, & \quad if \ \alpha \leq \beta. \end{aligned}$$

Problem 7. Prove these properties of ordinal exponentiation:

$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma};$$
$$\alpha^{\beta\cdot\gamma} = (\alpha^{\beta})^{\gamma}.$$

Problem 8. Prove that every ordinal can be written uniquely in the form

$$\omega^{\alpha_0} \cdot n_0 + \omega^{\alpha_1} \cdot n_1 + \dots + \omega^{\alpha_k} \cdot n_k,$$

where k is finite, each n_0 is a finite ordinal, and $\alpha_0 > \alpha_1 > \cdots > \alpha_k$ are ordinals.

Date: January 19, 2024.

Problem 9. A function f on the ordinals is increasing if $\alpha \leq f(\alpha)$ and f is continuous if given any sequence $\langle \alpha_i : i \in \lambda \rangle$ we have

$$f\left(\sup_{i\in\lambda}\alpha_i\right) = \sup_{i\in\lambda}f(\alpha_i).$$

Show that if $f : \text{Ord} \to \text{Ord}$ is increasing and continuous then there always is an ordinal α so that $f(\alpha) = \alpha$. Moreover show that if β is any ordinal we can always find such α to be larger than β .

Problem 10. [This problem uses some ideas from real analysis or topology. If you've taken neither of those classes you may find it challenging.]

A set $C \subseteq \mathbb{R}$ is called closed if it contains all its accumulation points, where x is an accumulation point of C if there are points in $C \setminus \{x\}$ abitrarily close to x.¹ A set $P \subseteq \mathbb{R}$ is called perfect if it is equal to the set of its accumulation points. Follow this outline to prove that any closed set $C \subseteq \mathbb{R}$ can be decomposed into a disjoint union of a perfect set and a countable set.

- (1) Define the derivative of a set $A \subseteq \mathbb{R}$ to be $A' = \{x \in \mathbb{R} : x \text{ is an accumulation point of } A\}$. Show that if A is closed then so is A'.
- (2) Starting from a closed set C recursively define a sequence of closed sets C_{α} :
 - $C_0 = C;$
 - $C_{\alpha+1} = C'_{\alpha}$; and
 - If γ is limit, then $C_{\gamma} = \bigcup_{\alpha < \gamma} C_{\alpha}$.
 - Say why every C_{α} is closed and that if $C_{\alpha} = C_{\alpha+1}$ then C_{α} is perfect.
- (3) Argue that $C_{\alpha} \setminus C_{\alpha+1}$ is always countable. [Hint: First see that if $x \in X \setminus X'$ then there is an open interval $U \ni x$ so that $U \cap X = \{x\}$.]
- (4) Finally, show that no matter what closed C you start with, there's a countable ordinal α so that $C_{\alpha} = C_{\alpha+1}$.
- (5) Conclude that C is the union of a perfect set and a countable set.

(Kameryn J. Williams) BARD COLLEGE AT SIMON'S ROCK, 84 ALFORD RD, GREAT BARRINGTON, MA 01230 *E-mail address*: kwilliams@simons-rock.edu *URL*: http://kamerynjw.net

¹That is, for any distance $\varepsilon > 0$ there is $y \in C \setminus \{x\}$ so that $|x - y| < \varepsilon$. If you know another characterization of closed sets you're welcome to use it instead for this problem.