MATH 355 PROBLEM SET CHAPTER 2: CARDINALS

KAMERYN J. WILLIAMS

Problem 1. Show that all of these sets have the same cardinality:

- $\mathcal{P}(\mathbb{N});$
- R;
- Any open interval (a, b), i.e. with a < b; and
- Any closed interval [a, b], i.e. with a < b.

Problem 2. Prove that there are 2^{\aleph_0} many continuous functions $\mathbb{R} \to \mathbb{R}$. [Hint: first calculate how many functions $\mathbb{Q} \to \mathbb{R}$ there are.] How many functions $\mathbb{R} \to \mathbb{R}$ are there?

Problem 3. Prove there are 2^{\aleph_0} many open sets in \mathbb{R} , where an open subset of \mathbb{R} is a union of open intervals. A G_{δ} -set is a set of reals which is a countable intersection of open sets. How many G_{δ} -sets are there? A $G_{\delta\sigma}$ -set is a set of reals which is a countable union of G_{δ} -sets. How many $G_{\delta\sigma}$ -sets are there?

Problem 4. Show that if κ is an uncountable cardinal there is no order embedding $\kappa \to \mathbb{R}$.

Problem 5. Prove the Cantor–Schroeder–Bernstein theorem without using Zermelo's well-ordering theorem, by following this outline.

- (1) Explain why it's enough to prove the special case that if $X \subseteq Y \subseteq Z$ and |X| = |Z| then |X| = |Y|.
- (2) Show that if a function $F : \mathcal{P}(Z) \to \mathcal{P}(Z)$ is monotone, meaning that $A \subseteq B$ implies $F(A) \subseteq F(B)$, then it has a fixed point—a set $P \subseteq Z$ so that F(P) = P.
- (3) Given a bijection $f : Z \to X$ define $F : \mathcal{P}(Z) \to \mathcal{P}(Z)$ as $F(A) = (Z \setminus Y) \cup f''A$. Use a fixed point for F to get a bijection $Z \to Y$.

Problem 6. Prove that cardinal trichotomy, the statement that the order relation on cardinals has trichotomy, implies Zermelo's well-ordering theorem. [Warning! Since you can't assume Zermelo's well-ordering theorem this means you can't use all of the stuff in section 2 and onward that builds on Zermelo.]

Problem 7. Say that a set X is D-finite if every injection $X \to X$ is a bijection, and X is D-infinite otherwise. Say that a set X is I-finite if for any $A \subseteq \mathcal{P}(X)$ there is $M \in A$ so that there is no $A \in A$ with $A \supseteq M$. Otherwise, X is I-infinite.

Prove that for a set X the following are equivalent.

- (1) X is infinite;
- (2) X is D-infinite;
- (3) X is I-infinite.

Date: January 22, 2024.

Problem 8. Prove the following basic exponentation facts hold for cardinal exponentiation.

$$\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$$
$$\kappa^{\lambda\cdot\mu} = (\kappa^{\lambda})^{\mu}$$
$$\kappa^{\lambda} \cdot \mu^{\lambda} = (\kappa \cdot \mu)^{\lambda}$$

Problem 9. A beth fixed point is a cardinal κ so that $\kappa = \beth_{\kappa}$. Prove that for any cardinal λ there is $\kappa > \lambda$ a beth fixed point. Prove that for any cardinals λ and μ there is $\kappa > \lambda$ so that $\operatorname{cof} \kappa = \mu$ and κ is a beth fixed point.

Problem 10. Generalizing the combinatorial definition of factorial for finite cardinals, define κ ! to be the cardinality of the set of bijections $\kappa \to \kappa$. Show that $\aleph_0! = 2^{\aleph_0}$. More generally, show that $\kappa! = 2^{\kappa}$ for any infinite κ .

(Kameryn J. Williams) BARD COLLEGE AT SIMON'S ROCK, 84 ALFORD RD, GREAT BARRINGTON, MA 01230 *E-mail address:* kwilliams@simons-rock.edu *URL:* http://kamerynjw.net