MATH 355 PROBLEM SET CHAPTER 3: THE CUMULATIVE HIERARCHY

KAMERYN J. WILLIAMS

Let t be a transitive set. When we say that an axiom is *true in* t we mean that if you restrict the quantifiers in the axiom to only quantify over elements of t then it comes out as true. The idea is, you imagine that t were the whole universe you're quantifying over.

Problem 1. Check that the axioms of Extensionality, Union, and Infinity are true in ω_1 , but the axioms of Pairing and Powerset are not true in ω_1 .

Problem 2. Suppose $x \in V_{\alpha}$. Prove that any choice function on x is in $V_{\alpha+n}$ for some finite n. What is the optimal value of n you can achieve? Conclude that if γ is limit then AC is true in V_{γ} .

Problem 3. Prove that if $\gamma > \omega$ is limit then Foundation plus every axiom of Z is true in V_{γ} .

The last two problems together imply that the only sticking point to V_{γ} satisfying all of ZFC is Replacement.

Problem 4. Show that Replacement is not true in V_{ω_1} nor in $V_{\aleph_{\omega}}$. [Hint: For each index α define a function from a set $\in V_{\alpha}$ which is onto α . Explain why its image can't be a set in V_{α} .]

The next two problems ask you to prove the full Mostowski collapse theorem.

Problem 5. Prove the following: Suppose (X, E) is a well-founded relation on a set X. Then there is a transitive set t and an onto map $\pi : X \to t$ so that x E y if and only if $\pi(x) \in \pi(y)$.

Problem 6. [This problem builds on the previous one.] Say that a relation (X, E) is extensional if it satisfies the axiom of Extensionality. That is, $x, y \in X$ are equal if and only if for all $z \in X$ we have $z \in x$ iff $z \in y$. Prove that if (X, E) is extensional and well-founded then the π from the previous problem is a bijection.

Problem 7. Prove that Replacement is equivalent to transfinite recursion. One direction we did in class, so what you need to prove is: working over the axioms Z + AC, prove that if transfinite recursion is valid then the image of a set under a class function is a set. [Hint: construct the image by transfinite recursion, using AC to have a well-order to work over.]

The next two problems ask you to prove that Zorn's lemma is equivalent to the axiom of Choice.

Problem 8. Prove over ZFC that

• (Zorn) Suppose (P, \leq) is a partially ordered set with the property that if $C \subseteq P$ is linearly ordered by \leq then there is $b \in P$ so that $c \leq b$ for all $c \in C$. Then there is a maximal element in P. Namely, there is $m \in P$ so that there is no $x \in P$ with m < x.

Problem 9. Prove over ZF that (Zorn) implies AC.

Date: March 14, 2024.

Problem 10. Prove that, over ZF, AC is equivalent to

• There are no sets A, B so that if $\kappa < |A|$ then $\kappa < |B|$ but A and B are incomparable in cardinality. (Meaning that there is no injection $A \to B$ and also no injection $B \to A$.

[Hint: This problem is a sequel to problem 6 from Chapter 2, which in turn was a sequel to problem 1 from Chapter 1. Do them first, or at least understand what they are saying.]

(Kameryn J. Williams) BARD COLLEGE AT SIMON'S ROCK, 84 ALFORD RD, GREAT BARRINGTON, MA 01230 *E-mail address*: kwilliams@simons-rock.edu *URL*: http://kamerynjw.net