MATH 355 PROBLEM SET CHAPTER 4: TREES

KAMERYN J. WILLIAMS

Problem 1. Let R be a relation on a set X so that for $x \in X$ there is $y \in X$ so that x R y. Prove that there is a branch through R, where a branch is a sequence $\langle x_n : n < \omega \rangle$ so that $x_n R x_{n+1}$ for every n.

A subset D of a tree T is called *dense* if for every $s \in T$ there is $t \supseteq s$ so that $t \in D$. If \mathcal{D} is a collection of dense subsets of T then a branch b through T is \mathcal{D} -generic if for every $D \in \mathcal{D}$ there is $\alpha <$ the height of T so that $b \upharpoonright \alpha \in D$.

Problem 2. Prove that if $T = 2^{<\omega}$ and \mathcal{D} is the collection of all dense subsets of T then there are no \mathcal{D} -generic branches.

Problem 3. Prove that if $T = 2^{<\omega}$ and \mathcal{D} is any countable collection of dense subsets of T then there exists a \mathcal{D} -generic branch.

Problem 4. Let κ be a regular cardinal. Prove that if $T = 2^{<\kappa}$ and \mathcal{D} is any collection of dense subsets of T so that $|\mathcal{D}| < \kappa$ then there exists a \mathcal{D} -generic branch.

Let T be a tree. An *antichain* in T is a set $A \subseteq T$ so that if $s \neq t \in A$ then s and t are incomparable: $s \not\subseteq t$ and $t \not\subseteq s$.

Problem 5. Prove that if $T = 2^{<\omega}$ then any antichain in T is countable.

An antichain A in T is maximal if $A \cup \{s\}$ is not an antichain for any $s \in T \setminus A$.

Problem 6. Let A be an antichain in T. Prove that A is maximal iff $D_A = \{s \in T : s \supseteq a \text{ for some } a \in A\}$ is dense.

The next few problems concerns two closely related results in Ramsey theory. For a set X, let $[X]^2$ denote the set of subsets of X with precisely 2 elements. A *coloring* of $[X]^2$ is a map which assigns each pair a color. And $H \subseteq X$ is *monochromatic* for a coloring χ if $\chi(\{x, y\})$ is the same for all $\{x, y\} \in [H]^2$.

Theorem (Finite Ramsey's Theorem). Fix natural numbers r and n. Then there is a natural number N so that for any coloring of $[N]^2$ into r colors there is monochromatic $H \subseteq X$ so that |H| = n.

The smallest N for which this works is called the Ramsey number for n with r colors.

Theorem (Infinite Ramsey's Theorem). Fix a natural number r. Then for any coloring of $[\omega]^2$ into r colors there is an infinite monochromatic $H \subseteq \omega$

Date: April 9, 2024.

KAMERYN J. WILLIAMS

Problem 7. Use Kőnig's lemma to prove the infinite Ramsey's theorem assuming the finite Ramsey's theorem.

Problem 8. Prove that the Ramsey number for 3 with 2 colors is 6. [Hint 1: there are two things to prove. (1) There is a coloring of $[5]^2$ into 2 colors with no monochromatic triple. (2) Any coloring of $[6]^2$ into 2 colors admits a monochromatic triple.] [Hint 2: You may find it clearest to draw $[n]^2$ as the complete graph on n vertices, and then the coloring colors the edges of the graph.]

The next two problems relate Kőnig's lemma to computability theory. These are appropriate to attempt if you took computability theory last semester. When we say that a tree T is *computable* we mean that the order relation \sqsubseteq_T is computable. (Use your favorite model of computation, e.g. Turing machines.) And similarly for computable from an oracle.

Problem 9. Prove that there is a computable binary tree T so that T has no computable branch. [Hint: If you have a tree of partial attempts to build the halting set, it can't have a computable branch as that would mean that the halting set is computable. Can you do this in such a way that T is computable?]

Problem 10. Prove that if T is a computable binary tree then T has a branch which is computable using the halting set 0' as an oracle.

The next problem concerns some ideas from logic. Consider a set T of logical formulae in a fixed formal language.¹ If φ is a sentence in the same language we say that T proves φ if there is a proof of φ using T as axioms.² And T is called *consistent* if T doesn't prove a contradiction $\varphi \wedge \neg \varphi$. A completion of T is consistent $S \supseteq T$ so that for any φ in the language of T we have that either Sproves φ or S proves $\neg \varphi$.

Problem 11. Use Kőnig's lemma to prove that any consistent set T of logical formulae in a countable language has a completion. [Hint: Build a tree of partial attempts to form a completion of T.]

(Kameryn J. Williams) BARD COLLEGE AT SIMON'S ROCK, 84 ALFORD RD, GREAT BARRINGTON, MA 01230 *E-mail address:* kwilliams@simons-rock.edu *URL:* http://kamerynjw.net

 $\mathbf{2}$

¹For example, the formal language of set theory has the single non-logical symbol \in .

 $^{^{2}}$ To make this a complete definition you need to formally define what a proof is. Let me leave that unstated, as the intuitive notion suffices.